Простейшая домашняя метеостанция или барометр из лампочки для развития наблюдательности у детей. Комнатная метеостанция Программное обеспечение для ПК

Недавно мой коллега устраивал небольшую научную выставку.
Мой учитель попросил меня представить какой-нибудь проект по электронике студентам в колледже. У меня было два дня, чтобы придумать что-то интересное и достаточно простое.



Так как погодные условия здесь достаточно переменчивы, а температура колеблется в диапазоне 30-40°С, я решил сделать домашнюю метеостанцию.

В чем заключаются функции погодной станции для дома?
Метеостанция на Ардуино с дисплеем – устройство, собирающее данные о погоде и условиях окружающей среды с помощью множества датчиков.

Обычно это следующие датчики:

  • ветра
  • влажности
  • дождя
  • температуры
  • давления
  • высоты

Моя цель – сделать портативную настольную метеостанцию своими руками.

Она должна уметь определять следующие параметры:

  • температуру
  • влажность
  • давление
  • высоту

Шаг 1: Покупаем нужные компоненты







  • DHT22 , датчик температуры и влажности.
  • BMP180 , датчик давления.
  • Припой
  • Однорядный разъем на 40 выходов

Из оборудования вам понадобятся:

  • Паяльник
  • Плоскогубцы для носоупоров
  • Провода

Шаг 2: Датчик температуры и влажности DHT22







Для измерения температуры используются разные датчики. Популярностью пользуются DHT22, DHT11, SHT1x

Я объясню, чем они отличаются друг от друга, и почему я использовал именно DHT22.

Датчик AM2302 использует цифровой сигнал. Этот датчик работает на уникальной системе кодировки и сенсорной технологии, поэтому его данные надежны. Его сенсорный элемент соединен с 8-битным однокристальным компьютером.

Каждый сенсор этой модели термокомпенсированный и точно откалиброванный, коэффициент калибровки находится в однократно программируемой памяти (ОТР-память). При чтении показаний сенсор будет вызывать коэффициент из памяти.

Маленький размер, низкое потребление энергии, большое расстояние передачи (100 м) позволяют AM2302 подходить почти ко всем приложениям, а 4 выхода в один ряд делают монтаж очень простым.

Давайте рассмотрим плюсы и минусы трех моделей датчиков.

DHT11

Плюсы: не требует пайки, самый дешевый из трех моделей, быстрый стабильный сигнал, дальность свыше 20 м, сильная интерференция.
Минусы: Библиотека! Нет вариантов разрешения, погрешность измерений температуры +/- 2°С, погрешность измерений уровня относительной влажности +/- 5%, неадекватный диапазон измеряемых температур (0-50°С).
Области применения: садоводство, сельское хозяйство.

DHT22

Плюсы: не требует пайки, невысокая стоимость, сглаженные кривые, малые погрешности измерений, большой диапазон измерений, дальность больше 20 м, сильная интерференция.
Минусы: чувствительность могла быть выше, медленное отслеживание температурных изменений, нужна библиотека.
Области применения: изучение окружающей среды.

SHT1x

Плюсы: не требует пайки, сглаженные кривые, малые погрешности измерений, быстрое срабатывание, низкое потребление энергии, автоматический режим сна, высокая стабильность и согласованность данных.
Минусы: два цифровых интерфейса, погрешность в измерении уровня влажности, диапазон измеряемых температур 0-50°С, нужна библиотека.
Области применения: эксплуатация в суровых условиях и в долгосрочных установках. Все три датчика относительно недорогие.

Соединение

  • Vcc – 5В или 3,3В
  • Gnd – с Gnd
  • Data – на второй вывод Arduino

Шаг 3: Датчик давления BMP180



BMP180 – барометрический датчик атмосферного давления с I2C-интерфейсом.
Барометрические датчики атмосферного давления измеряют абсолютное значение окружающего воздуха. Этот показатель зависит от конкретных погодных условий и от высоты над уровнем моря.

У модуля BMP180 имелся 3,3В стабилизатор на 662кОм, который я, по собственной глупости, случайно взорвал. Пришлось делать обводку питания напрямую к чипу.

Из-за отсутствия стабилизатора, я ограничен в выборе источника питания – напряжение выше 3,3В разрушит датчик.
У других моделей может не быть стабилизатора, обязательно проверяйте его наличие.

Схема соединения датчика и шины I2C с Arduino (nano или uno)

  • SDA — A4
  • SCL — A5
  • VCC — 3.3V
  • GND – GND

Давайте немного поговорим о давлении, и его связи с температурой и высотой.

Атмосферное давление в любой точке непостоянно. Сложное взаимодействие между вращением Земли, наклоном Земной оси, приводит к появлению множества областей высокого и низкого давления, что, в свою очередь, приводит к ежедневной смене погодных условий. Наблюдая за изменением давления, вы можете сделать краткосрочный прогноз погоды.

Например, падение давления обычно означает дождливую погоду или приближение грозы (приближение области низкого давления, циклона). Поднимающееся давление обычно означает сухую ясную погоду (над вами проходит область высокого давления, антициклон).

Атмосферное давление также изменяется с высотой. Абсолютное давление в базовом лагере на Эвересте (5400 м над уровнем моря) ниже, чем абсолютное давление в Дели (216 м над уровнем моря).

Так как показатели абсолютного давления изменяются в каждой локации, мы будем обращаться к относительному давлению, или давлению на уровне моря.

Измерение высоты

Среднее давление на уровне моря 1013,25 ГПа (или миллибар). Если подняться над атмосферой, это значение упадет до нуля. Кривая этого падения вполне понятна, поэтому вы можете сами вычислить высоту над уровнем моря, используя следующее уравнение: alti=44330*

Если вы примите давление на уровне моря 1013,25 Гпа как р0, решением уравнения будет ваша текущая высота над уровнем моря.

Меры предосторожности

Не забывайте, что датчику BMP180 нужен доступ к окружающей атмосфере, чтобы иметь возможность считывать давление воздуха, не помещайте датчик в закрытый корпус. Небольшого вентиляционного отверстия будет вполне достаточно. Но и слишком открытым его не оставляйте – ветер будет сбивать показания давления и высоты. Продумайте защиту от ветра.

Защитите от нагревания. Для измерения давления необходимы точные температурные показания. Постарайтесь защитить датчик от перепадов температуры и не оставляйте его вблизи источников высоких температур.

Защитите от влаги. Датчик BMP180 чувствителен к уровню влажности, постарайтесь предотвратить возможное попадание воды на датчик.

Не ослепите датчик. Неожиданностью стала чувствительность силикона в датчике к свету, который может попасть на него через отверстие в крышке чипа. Для максимально точных измерений постарайтесь защитить датчик от окружающего света.

Шаг 4: Собираем прибор







Устанавливаем однорядные разъемы для Arduino Nano. Вообще, мы обрезали их до нужного размера и немного зашкурили, так что они смотрятся, словно такими и были. Потом припаиваем их. После, устанавливаем однорядные разъемы для датчика DHT22.

Устанавливаем 10кОМ резистор от вывода данных к земле (Gnd). Все паяем.
Потом точно также устанавливаем однорядный разъем для датчика BMP180, питание делаем 3,3В. Соединяем все с шиной I2C.

В последнюю очередь подключаем LCD-дисплей, на ту же I2C шину, что и датчик BMP180.
(в четвертый разъем я планирую позже подключить RTC-модуль (часы реального времени), чтобы прибор еще и время показывал).

Шаг 5: Кодирование




Загрузите библиотеки

Чтобы установить библиотеки на Arduino, перейдите по ссылке

#include
#include #include #include "DHT.h" #include

SFE_BMP180 pressure;

#define ALTITUDE 20.56 #define I2C_ADDR 0x27 // <<- Add your address here. #define Rs_pin 0 #define Rw_pin 1 #define En_pin 2 #define BACKLIGHT_PIN 3 #define D4_pin 4 #define D5_pin 5 #define D6_pin 6 #define D7_pin 7

#define DHTPIN 2 // what digital pin we"re connected to

// Uncomment whatever type you"re using! //#define DHTTYPE DHT11 // DHT 11 #define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321 DHT dht(DHTPIN, DHTTYPE); LiquidCrystal_I2C lcd(I2C_ADDR,En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin); float t1,t2;

void setup() { Serial.begin(9600); lcd.begin (16,2); // <<-- our LCD is a 20x4, change for your LCD if needed // LCD Backlight ON lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE); lcd.setBacklight(HIGH); lcd.home (); // go home on LCD lcd.print("Weather Station"); delay(5000); dht.begin(); pressure.begin(); } void loop() { char status; double T,P,p0,a; status = pressure.startTemperature(); if (status != 0) { delay(status);

status = pressure.getTemperature(T); if (status != 0) { Serial.print("1"); lcd.clear(); lcd.setCursor(0,0); lcd.print("Baro Temperature: "); lcd.setCursor(0,1); lcd.print(T,2); lcd.print(" deg C "); t1=T; delay(3000);

status = pressure.startPressure(3); if (status != 0) { // Wait for the measurement to complete: delay(status);

status = pressure.getPressure(P,T); if (status != 0) {lcd.clear(); lcd.setCursor(0,0); lcd.print("abslt pressure: "); lcd.setCursor(0,1); lcd.print(P,2); lcd.print(" mb "); delay(3000);

p0 = pressure.sealevel(P,ALTITUDE); // we"re at 1655 meters (Boulder, CO)

a = pressure.altitude(P,p0); lcd.clear(); lcd.setCursor(0,0); lcd.print("Altitude: "); lcd.setCursor(0,1); lcd.print(a,0); lcd.print(" meters"); delay(3000); } } } } float h = dht.readHumidity(); // Read temperature as Celsius (the default) float t = dht.readTemperature(); t2=t; lcd.clear(); lcd.setCursor (0,0); // go to start of 2nd line lcd.print("Humidity: "); lcd.setCursor(0,1);lcd.print(h); lcd.print(" %"); delay(3000); lcd.clear(); lcd.setCursor (0,0); // go to start of 2nd line lcd.print("DHT Tempurature: "); lcd.setCursor(0,1); lcd.print(t); lcd.print(" deg C "); delay(3000); lcd.clear(); lcd.setCursor (0,0); // go to start of 2nd line lcd.print("Mean Tempurature: "); lcd.setCursor(0,1); lcd.print((t1+t2)/2); lcd.print(" deg C "); delay(3000); }

Я использовал версию Arduino 1.6.5, код точно к ней подходит, к более поздним так же может подойти. Если код по каким-либо причинам не подходит, используйте версию 1.6.5 как базовую.

Метеостанция своими руками.

Дело было вечером, делать было нечего после нового года. Как обычно, во время зимних новогодних каникул хочется занять голову да и руки тоже чем-нибудь полезным, творческим. В эти новогодние каникулы решил сделать метеостанцию своими руками. Готовиться начал заранее, все компоненты закупал и собирал перед новым годом, а основное программирование делал на каникулах.

(под катом много фотографий!)

Сначала пробегусь по компонентам, ссылки давать не буду, так как на eBay (в личном кабинете) товары ушли в архив. Многие компоненты покупал неспеша на аукционе eBay. Впервые опробовал аукцион, раньше всегда покупал «buy it now». Что могу сказать, если не спешить с покупками, то некоторые компоненты можно купить дешевле (разница иногда бывает в два раза).

Датчик давления ВМР085
Это основной датчик. Когда я увидел его на eBay, то понял, что хочу собрать именно домашнюю метеостанцию.
Прилетел датчик в обычном конверте, внутри обклеенном пупыркой.

Внутри конверта была визитка продавца и датчик, запакованный в антистатический пакет и завёрнутый в ещё один слой пупырки

Антистатический пакет был запаян, дабы влага во время перелёта не грозила датчику

Достаём датчик. С одной стороны припаяна линейка контактов, которые были вставлены в пенопласт, чтобы не погнулись. С другой стороны располагается сам датчик и маркировка контактов.




Все бы хорошо, но маркировка контактов нанесена в зеркальном виде.
Подключается датчик по шине I2C и питается от 3,3 В. То есть для нормального функционирования нужно 4 провода (+, -, SDA, SCL)
Опрашивать датчик можно 2 способами: или через библиотеку, или используя функции прямо скетче.
Пример программы:

#include

#define BMP085_ADDRESS 0x77 // I2C address of BMP085

Const unsigned char OSS = 0; // Oversampling Setting

// Calibration values
int ac1;
int ac2;
int ac3;
unsigned int ac4;
unsigned int ac5;
unsigned int ac6;
int b1;
int b2;
int mb;
int mc;
int md;

Short temperature;
long pressure;

Void setup()
{
Serial.begin(9600);
Wire.begin();
bmp085Calibration();
}

Void loop()
{
temperature = bmp085GetTemperature(bmp085ReadUT());
pressure = bmp085GetPressure(bmp085ReadUP());
Serial.print(«Temperature: „);
Serial.print(temperature/10.0, DEC);
Serial.println(“ C»);
Serial.print(«Pressure: „);
Serial.print(pressure/133.322, DEC);
Serial.println(“ mm Hg»);
Serial.println();
delay(1000);
}

Void bmp085Calibration()
{
ac1 = bmp085ReadInt(0xAA);
ac2 = bmp085ReadInt(0xAC);
ac3 = bmp085ReadInt(0xAE);
ac4 = bmp085ReadInt(0xB0);
ac5 = bmp085ReadInt(0xB2);
ac6 = bmp085ReadInt(0xB4);
b1 = bmp085ReadInt(0xB6);
b2 = bmp085ReadInt(0xB8);
mb = bmp085ReadInt(0xBA);
mc = bmp085ReadInt(0xBC);
md = bmp085ReadInt(0xBE);
}

Short bmp085GetTemperature(unsigned int ut)
{
long x1, x2;
x1 = (((long)ut - (long)ac6)*(long)ac5) >> 15;
x2 = ((long)mc << 11)/(x1 + md);
b5 = x1 + x2;

Return ((b5 + 8)>>4);
}

Long bmp085GetPressure(unsigned long up)
{
long x1, x2, x3, b3, b6, p;
unsigned long b4, b7;
b6 = b5 - 4000;
// Calculate B3
x1 = (b2 * (b6 * b6)>>12)>>11;
x2 = (ac2 * b6)>>11;
x3 = x1 + x2;
b3 = (((((long)ac1)*4 + x3)<>2;
// Calculate B4
x1 = (ac3 * b6)>>13;
x2 = (b1 * ((b6 * b6)>>12))>>16;
x3 = ((x1 + x2) + 2)>>2;
b4 = (ac4 * (unsigned long)(x3 + 32768))>>15;
b7 = ((unsigned long)(up - b3) * (50000>>OSS));
if (b7 < 0x80000000)
p = (b7<<1)/b4;
else
p = (b7/b4)<<1;
x1 = (p>>8) * (p>>8);
x1 = (x1 * 3038)>>16;
x2 = (-7357 * p)>>16;
p += (x1 + x2 + 3791)>>4;
return p;
}

// Read 1 byte from the BMP085 at "address"
char bmp085Read(unsigned char address)
{
unsigned char data;

Wire.write(address);
Wire.endTransmission();
Wire.requestFrom(BMP085_ADDRESS, 1);
while(!Wire.available())
;
return Wire.read();
}

Int bmp085ReadInt(unsigned char address)
{
unsigned char msb, lsb;
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(address);
Wire.endTransmission();
Wire.requestFrom(BMP085_ADDRESS, 2);
while(Wire.available()<2)
;
msb = Wire.read();
lsb = Wire.read();
return (int) msb<<8 | lsb;
}

// Read the uncompensated temperature value
unsigned int bmp085ReadUT()
{
unsigned int ut;
// Write 0x2E into Register 0xF4
// This requests a temperature reading
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(0xF4);
Wire.write(0x2E);
Wire.endTransmission();
// Wait at least 4.5ms
delay(5);
// Read two bytes from registers 0xF6 and 0xF7
ut = bmp085ReadInt(0xF6);
return ut;
}

// Read the uncompensated pressure value
unsigned long bmp085ReadUP()
{
unsigned char msb, lsb, xlsb;
unsigned long up = 0;
// Write 0x34+(OSS<<6) into register 0xF4
// Request a pressure reading w/ oversampling setting
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(0xF4);
Wire.write(0x34 + (OSS<<6));
Wire.endTransmission();
// Wait for conversion, delay time dependent on OSS
delay(2 + (3< // Read register 0xF6 (MSB), 0xF7 (LSB), and 0xF8 (XLSB)
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(0xF6);
Wire.endTransmission();
Wire.requestFrom(BMP085_ADDRESS, 3);
// Wait for data to become available
while(Wire.available() < 3)
;
msb = Wire.read();
lsb = Wire.read();
xlsb = Wire.read();
up = (((unsigned long) msb << 16) | ((unsigned long) lsb << 8) | (unsigned long) xlsb) >> (8-OSS);
return up;
}


Помимо этого в датчике есть собственный термо-сенсор для компенсации давления и альтиметр

Arduino Nano v3.0
Это сердце всей метеостанции. По простому говоря, контроллер в миниатюрном размере.
Покупал
Рассказывать подробно про контроллер не буду, так как до меня уже это сделали:


Посылка с lightake была сборная, контроллер пришел в пакете, где был USB-кабель и Arduino в запаянном антистатическом пакете.

Чтобы оценить размеры, рядом с Arduino положил монетку номиналом 1 руб.

Плата контроллера вблизи



USB-кабель хороший, с ферритовым кольцом. Питается Arduino по USB кабелю. Среду разработки можно скачать (страница для скачивания ). Язык «С»-подобный, с освоением проблем не было, так как на нем очень много программирую на работе.

LCD экран
На работе в закромах нашёл совместимый LCD 1602 экран. С подключением пришлось повозиться, так как даташита на него не нашёл. В результате LCD заработал.

Но после недолгой эксплуатации заметил, что мне этого экрана мало и вывести больше данных не получится, так как он имеет всего 2 строки по 16 символов в каждой. Поначалу кажется, что этих параметров хватит, но когда начинаешь программировать, то понимаешь, что максимум можно впихнуть 3-4 параметра. А если делать меню (я ведь подумывал сделать меню на этом экране), то свободного места остаётся на 1-2 параметра.
В итоге начал подыскивать себе другой экран. Сначала присматривался к графическому экрану от Nokia 3310 и даже в аукционе eBay участвовал, чтобы его купить, но не сложилось (чему я очень рад), поэтому мне пришлось отказаться от этого экрана. Сейчас я понимаю, что он был бы слишком мал для моих целей, так как есть с чем сравнивать.
Случайно просматривая шилды на Arduino, я наткнулся на графический экран 12864 на контроллере ST7920. У этого экрана и размер подходящий, и хорошее разрешение для моих нужд (128х64). То есть можно спокойно разместить 6-7 строк по 20 символов нормально читающегося шрифта. Так как экран графический, то помимо текста разными шрифтами можно разместить и графику. Короче, это именно то, что мне нужно было, все присутствовало в этом экране, поэтому я не выдержал и заказал.
Посылка пришла быстро и была упаковано стандартно: конверт-пупырка, внутри ещё слой пупырки и экран в антистатическом пакете:






Чтобы оценить размеры, рядом с LCD положил монетку номиналом 1 руб.




Чтобы быстро подключить экран к Arduino, к контактам LCD припаял линейку контактов. Подключать LCD можно по последовательной шине и по параллельной. Я выбрал первый вариант, так как свободных контактов Arduino и так мало.
Подключение (взято из сети):

- Контакт 1 (GND) подключается к общей шине
- Контакт 2 (VCC) подключается к шине питания +5V, причём потребляемый ток сравнительно небольшой и дисплей можно питать от встроенного стабилизатора Arduino.
- Контакты 4, 5 и 6 подключаются к цифровым выходам Arduino, образуя последовательный интерфейс SPI:
контакт 4 – (RS) – соответствует линии CS (например 7)
контакт 5 – (RW) – соответствует линии MOSI (например 8)
контакт 6 – (E) – соответствует линии SCK (например 3)
номера контактов Arduino могут быть любыми, главное не забыть потом правильно указать их в тексте программы при инициализации дисплея.
- Контакт 15 (PSB) соединяется с общей шиной.
- Контакты 19 (A) и 20 (K) – это питание подсветки (+5V и GND соответственно). Для регулировки яркости подсветки можно использовать переменный резистор 10кОм, включённый между шинами питания и GND. Напряжение с его движка подаётся на контакт 19 дисплея.
По этой инструкции я подключил все, кроме подсветки. В качестве питания подсветки я использовал ШИМ Arduino.
Для того, чтобы программно подключить LCD к Arduino, используется библиотека u8glib. Скачать можно . Если есть проблемы скачивания, то могу библиотеку залить на narod.ru.
Сама библиотека не сложная и позволяет выводить текст разным шрифтом, рисовать линию, рисовать простейшие геометрические фигуры (прямоугольник, круг), выводить на экран свои изображения, подготовленные специальным образом. В принципе, этого инструмента достаточно для большинства задач.
Вот результат простенькой программы:

Сама программа:

#include «U8glib.h»

U8GLIB_ST7920_128X64 u8g(3, 9, 8, U8G_PIN_NONE); // SPI E = 3, RW = 9, RS = 8

// Подпрограмма определения свободной памяти
int freeRam () {
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0? (int) &__heap_start: (int) __brkval);
}

Void setup(void) {
u8g.setFont(u8g_font_6x10); // шрифт
u8g.setRot180(); //Перевернул экран
analogWrite(6, 115); // Устанавливаем яркость экрана (анод подсветки на 6 pin)
}

Void loop(void) {
u8g.firstPage();
do {

u8g.setPrintPos(1, 12); // позиция
u8g.print(«Hello!!!»); // вывод текста
u8g.drawBox(0,22,128,9); // Закрашиваем прямоугольник белым
u8g.setColorIndex(0); // белые чернила, черный фон
u8g.setPrintPos(1, 30); // позиция
u8g.print(«Word...»); // вывод текста

U8g.setColorIndex(1); // белые чернила, черный фон
u8g.setPrintPos(1, 50); // позиция
u8g.print(«After start =»); // вывод текста
u8g.setPrintPos(85, 50); // позиция
u8g.print(millis() / 1000); // вывод число секунд после старта
u8g.setPrintPos(1, 64); // позиция
u8g.print(freeRam ()); // вывод сколько памяти занято
} while(u8g.nextPage());

Delay(200);
}

Часы реального времени DS1307
Ещё один компонент для моей метеостанции. На данном шилде реализованы часы реального времени. Заказывал их на аукционе eBay. Продавец прислал платку часов в нереально большой коробке


Внутри коробки было два листка А4 с рекламой и платка часов, обмотанная целлофаном


Хочу заметить, что плата не превышает размером 2 руб. монету, а коробка была размером 13х15х5 см.
Плата была упакована в антистатический пакет

Платка вблизи



С данным модулем мне пришлось повозиться. Во-первых, были трудности подключения. А во-вторых, кварц на данной плате никакой. Если бы знал, что на модуль потрачу столько времени, то, скорее всего, собрал бы его сам, благо в сети полно схем. Самая простейшая схема содержит 4-5 компонентов.
По поводу подключения. Я нашёл библиотеку, в которой было сказано, что интерфейс I2C можно подключать не на привычные аналоговые входы Arduino (А4 и А5), а на любые дискретные. Как написано, так и сделал. Сначала ничего не работало, после долгого танца с бубном часы завелись. Ну, подумал, всё, проблемы закончились, но после того, как я попытался этот же модуль подключить к другой Arduino, пляски с бубном продолжились. Много времени потратил на поиски решения данной проблемы и практически везде указывалось либо на неправильное подключение, либо на отсутствие подтягивающих резисторов на контактах SCL и SDA. Я уже хотел с паяльником в плату лезть, но на одном форуме случайно наткнулся на код, где было сказано, чтобы SCL и SDA подключать к стандартным портам I2C на Arduino. После стандартного подключения, все сразу заработало.
Теперь по поводу кварца. Не знаю, что там за кварц ставят китайцы, но часы с таким кварцем убегали в сутки на 10-11 сек. В месяц данная погрешность составляет 5 минут, а в год 1 час. Нафиг такие часы не нужны. Пришлось снова лезть в сеть и искать, как исправить данный баг. Первое попавшее решение говорит о том, что нужно заземлить кварц. Сделал - результат нулевой. Ещё где-то нашёл, что нужно найти старую материнку и выпаять оттуда часовой кварц. Сделал - результат есть. Теперь часы убегают не на 10-11 секунд, а на 1,5 секунды в сутки. Скажем так, стало лучше, но до идеала далеко. Так как больше с паяльником возится неохота, то было решено подводить часы программно, то есть раз в сутки подводить часы на нужную величину. После 10 суток, часы ушли не более, чем на секунду. Метод хорош, но только тогда, когда устройство синхронизации Arduino подключено к питанию, иначе часы работают от батарейки и все равно убегают.
Небольшая тестовая программа:

#include «Wire.h»
#define DS1307_I2C_ADDRESS 0x68 // SDA A4, SCL A5

Byte decToBcd(byte val)
{
return ((val/10*16) + (val%10));
}

Byte bcdToDec(byte val)
{
return ((val/16*10) + (val%16));
}

Void setDateDs1307(byte second, // 0-59
byte minute, // 0-59
byte hour) // 0-99
{

Wire.write(0);
Wire.write(decToBcd(second));
Wire.write(decToBcd(minute));
Wire.write(decToBcd(hour));
Wire.endTransmission();
}

Void getDateDs1307(byte *second,
byte *minute,
byte *hour)
{

Wire.beginTransmission(DS1307_I2C_ADDRESS);
Wire.write(0);
Wire.endTransmission();

Wire.requestFrom(DS1307_I2C_ADDRESS, 3);

*second = bcdToDec(Wire.read());
*minute = bcdToDec(Wire.read());
*hour = bcdToDec(Wire.read());
}

Void setup()
{
byte second, minute, hour;
Wire.begin();
Serial.begin(9600);

Second = 45;
minute = 5;
hour = 16;

SetDateDs1307(second, minute, hour);
}

Void loop()
{
byte second, minute, hour;

GetDateDs1307(&second, &minute, &hour);
Serial.print(hour, DEC);
Serial.print(":");
Serial.print(minute, DEC);
Serial.print(":");
Serial.println(second, DEC);

Delay(1000);
}


Здесь не использована библиотека, да и функции усечены, для чтения и записи времени.

Датчик температуры и влажности DHT11
Про данный датчик рассказывать нечего. Я бы его даже не стал использовать, если бы не нужна была влажность. К сожалению, я его не сфотографировал, когда получил, поэтому фотографий не будет. Фотографии датчика можно будет посмотреть ниже, где я его подключил к Arduino. Подключение датчика простое (+, цифровой выход, -). Обычно датчики делают четырёх контактные. При таком форм-факторе третий контакт ни к чему не подключают.
Для подключения к Arduino можно использовать библиотеку. Скачать можно .
Небольшая тестовая программа c выводом информации на LCD дисплей 1602:

// include the library code:
#include
#include

// Declare objects
dht11 DHT11;
LiquidCrystal lcd(12, 11, 6, 5, 4, 3);

#define DHT11PIN 7
int i;

Void setup()
{
lcd.begin(16, 2);
lcd.print(«Status: „);
i=0;
}

Void loop()
{
int chk = DHT11.read(DHT11PIN);
lcd.setCursor(8, 0);
switch (chk)
{
case 0: lcd.print(“OK „); break;// lcd.setCursor(11, 0); lcd.print(millis()/2000); break;
case -1: lcd.print(“Checksum error»); mErr(); break;
case -2: lcd.print(«Time out error»); mErr(); break;
default: lcd.print(«Unknown error»); mErr(); break;
}
delay(500);
lcd.setCursor(15, 0);
switch (i)
{
case 0: lcd.print("^"); lcd.setCursor(15, 1); lcd.print(" ");break;
case 1: lcd.print(«v»); lcd.setCursor(15, 1); lcd.print(" ");break;
default: lcd.setCursor(15, 1); lcd.print(«E»); break;
}
i=i+1;
if (i>1) i=0;
lcd.setCursor(0, 1);
lcd.print(«H=»);
lcd.setCursor(2, 1);
lcd.print((float)DHT11.humidity, 0);
lcd.setCursor(4, 1);
lcd.print("%");
lcd.setCursor(8, 1);
lcd.print(«T=»);
lcd.setCursor(10, 1);
lcd.print((float)DHT11.temperature, 0);
lcd.setCursor(12, 1);
lcd.print(«C»);

Void mErr()
{
lcd.setCursor(2, 1);
lcd.print("**");
lcd.setCursor(10, 1);
lcd.print("**");
i=5;
}


Минусы у датчика есть – данные с датчика идут только в целых числах, да и диапазон слабенький.

Вроде, про все компоненты написал. Осталось собрать все в единое целое.
Упс, чуть не забыл! Для того, чтобы все собрать устройство, нужен корпус. Корпус тоже заказывал на Ebay. Продавец оказался из Англии. Посылка дошла быстро, но фотографировать её не стал. Все фотографии корпуса ниже.

Сначала собрал все на столе с помощью специальных проводков. Написал тестовую программу и залил её в контроллер.



На самом деле синий цвет подсветки гораздо ярче. Даже при минимальной яркости (Bright=5) происходит засветка кадра.

Чтобы все собрать без проводов, было решено сделать мини материнскую плату, а платка Arduino и шилды надевались на разъёмы. В случае чего, их с лёгкостью можно быстро извлечь. LCD экран и кнопки для управления я решил также цеплять на разъёмах, только датчик температуры впаять на проводах.
Вот такая вышла платка



На последней фотографии я ещё до конца флюс не смыл. Под шилды рядом с разъёмами приклеил пористую резину, чтобы была хоть какая-то опора. Хотя на самом деле шилды в разъёмах на контактах и так прекрасно держатся.

Материнская плата с установленными шилдами и платой Arduino.

Вот так выглядит полное подключение к материнской плате


Вместо кнопок использовал самодельный шилд, спаянный на макетной плате. В качестве кнопок использовал кнопки из старых мышек.
Как видно, количество проводов убавилось.

Основная проблема размещения в корпус - это ровно выпилить паз под LCD экран. Как я ни старался, все равно идеально не получилось. Щели в некоторых местах были чуть больше 1 мм. Чтобы все смотрелось аккуратно, я взял чёрный герметик для аквариума и залил все щели, заодно экран крепил именно на этот герметик. После высыхания герметика снаружи обрезал излишки. При ярком освещении герметик видно, а при обычном - все сливается с корпусом.
Вот так выглядит корпус изнутри с установленным LCD экраном и материнской платой.

Вот так выглядит снаружи при ярком освещении (прошу прощения за отпечатки пальцев, увидел их, когда разбирал фотографии).

Долго думал, как приладить кнопки в корпус и, самое главное, какие использовать кнопки…
В радиоэлектронных магазинах приглянулись кнопка с длинным шпиньком и наконечники, которые надеваются на этот шпинёк. Эти кнопки используются для пайки на плату. Все бы хорошо, но у них есть минус – ход нажатия очень маленький и громкий.
Размещать кнопки пришлось в два этапа: первый - разместить кнопки на плате, второй - эту плату крепить ещё на одной плате. И все это потом засовывать в корпус на направляющие.

Вот так выглядит платка с кнопками:



Вот так выглядит плата-держатель:


Здесь видны направляющие, в которые вставляется плата с кнопками. Некоторые элементы паял для того, чтобы придать жёсткость плате.

Теперь все засовываем в корпус
Без подключения кнопок:


С подключением кнопок:

Закрываем корпус и включаем. Все прекрасно работает, кнопки отрабатывают, как нужно.

В конце размещаю небольшое видео работы устройства в разных режимах:
http://www.youtube.com/watch?v=KsiVaUWkXNA&feature=youtu.be
У кого видео здесь не отображается, вот ссылка на

Пора заканчивать обзор.
Немного напишу о программе, а потом краткие выводы. Когда писал программу, не думал, что очень быстро упрусь в ограничение в 30720 байт.


Пришлось оптимизировать код. Многие куски кода выносил в подпрограммы. Никогда бы не подумал, что оператор switch… case в компилированном виде занимает больше места, чем несколько if… else. Ещё экономит место правильное объявление переменных. Если объявлять массив long, хотя вполне можно обойтись byte, то перерасход памяти достигает 500 байт в зависимости от размерности массива. Когда пишешь программу, то об этом не думаешь, а уже потом, когда анализируешь программу, то понимаешь, что некоторые вещи сделал неправильно, и начинаешь оптимизировать код. После того, как проблемы с размером программы были решены, я упёрся в ограничение оперативной памяти. Выражалось это в том, что программа начинала виснуть после загрузки. Пришлось вводить подпрограмму подсчёта свободной оперативной памяти. В результате, был вынужден отказаться от одного алгоритма предсказывания погоды, так как он должен выводить пиктограммы на экран. Сам алгоритм работает, а вот вывод пиктограмм пришлось заремировать. У меня есть ещё задумки, как оптимизировать код, но в ближайшем будущем оставляю работать устройство, как есть, чтобы оценить работоспособность и выявить все баги.

Теперь небольшие выводы
Минусы
1) Цена. Оправдание этому минусу – хобби никогда не бывает дешёвым.

Плюсы
1) Большой функционал устройства
2) Наращивание функций ограничивается только используемым контроллером и собственным желанием
3) Эстетическое удовольствие от созерцания и моральное удовльствие от того, что я все-таки собрал и доделал это устройство

Планирую купить +86 Добавить в избранное Обзор понравился +137 +304

Здравствуйте уважаемые друзья сайта "Радиосхемы "! Ещё давно хотел собрать домашнюю метеостанцию , изначально планировалось сделать автономную конструкцию с ЖК индикатором и т.д., но когда руки уже почти потянулись к текстолиту, у меня произошла ситуация, верней в одной из компаний в которой я тружусь, а именно, в серверной комнате сломался кондиционер. Последствия могли бы быть очень печальны, если бы мне не понадобилось заехать туда по другим вопросам, но слава богу всё обошлось. После этой ситуации понял, что идея метеостанции требует срочной реализации, только совсем уже в другом виде. Итак, обо всём по порядку. Представляемая конструкция - это USB примочка к ПК, которая передаёт данные с датчиков по средствам UART - USB с интервалом 2 секунды, соответственно, на ПК установлена программа, которая помимо обработки и отображения полученных данных передаёт их, при желании, на WEB сервер, зайдя на который можно отслеживать все показания в режиме реального времени и как вы понимаете, находясь в любой точке мира. Блок передаваемых данных выглядит следующим образом:

  • +data
  • humidity:хх
  • tempepature:хх
  • pressure:ххх
  • -data

Перемычки JP1, JP2, JP3 предназначены для «зануления» определённых значений, то есть при установленной перемычке JP1 значение влажности будет всегда 0, при установленной JP2 значение температуры всегда будет 0 и при JP3 значение давления всегда 0.

Схема самодельной метеостанции

Схема очень проста и по сути состоит из 4 основных компонентов. Это МК, датчик атмосферного давления + температуры, датчик влажности и USB - UART преобразователь.

Сразу скажу, что все компоненты покупал на всем известном электронном аукционе, причём покупал сразу в виде готовых модулей. Поясню почему готовыми модулями, во первых - цена датчика (или микросхемы) отдельно и цена модуля ничем практически не отличается, во вторых - готовый модуль уже имеет всю необходимую обвязку, такую как подтягивающие резисторы, стабилизаторы и прочее, в третьих - это намного упрощает конструкцию, а соответственно и её реализацию. Теперь немного о каждом модуле по отдельности.

Датчик давления и температуры

Потрясающий во всех отношениях датчик атмосферного давления и температуры BMP180.


Несмотря на свои крошечные размеры, этот датчик позволяет выдавать удивительно точные показания, как температуры, так и атмосферного давления. Сам датчик имеет размеры ~3х3 мм, готовый модуль ~10х13 мм, питание датчика 3.3 вольта, поэтому на платке имеется стабилизатор. Интерфейс I2C .

DHT11 является датчиком влажности + температуры, довольно хорош в своей ценовой категории. Но есть небольшой минус, это - точность. Если погрешность по влажности вполне в пределах нормы, то с показаниями температуры всё не так хорошо, но нам и не нужны его данные по температуре т.к. температуру будем брать с BMP180. Штыри на модуле перепаяны на прямые, изначально модуль идёт с угловыми штырьками и к тому же они припаяны с другой стороны.

USB - UART преобразователь

Вообще микросхем и готовых USB - UART преобразователей огромное количество, я остановился на этом. Данный модуль работает на микросхеме FT232RL, а вот изготовитель этой микросхемы далеко не FTDI как заявлено на корпусе этой микросхемы, проще говоря, используемая микросхема - это китайская подделка. Но в этом нет ничего страшного, за исключением того, что компания FTDI решила бороться с подделками очень хитрым способом, они выпустили драйвера, которые затирают ID микросхемы на не оригинальных чипах, после чего подделка перестаёт работать. Для того чтобы этого не случилось - достаточно использовать драйвера НЕ ВЫШЕ версии 2.08.14 и тогда никаких проблем не будет, разницы в работе не оригинала вы не заметите. Если всё же это случилось и устройство перестало правильно определяться в диспетчере устройств, то ничего не потеряно, в любом поисковике вы найдёте решение этой проблемы за 5 минут, на этом я не буду останавливаться.

Для своих целей, мне пришлось немного допилить модуль, перепаяв на нём штырьки, с угловых на прямые, и с прямых на угловые.

Сделать это не повредив ПП достаточно просто, сначала необходимо тонкими кусачками разделить пластиковые втулочки между штырями, после чего выпаять по отдельности каждый штырь вместе с втулкой, затем убрав лишний припой - впаять уже нужные штыри с нужной стороны. Прошивать МК нужно вот с такими фюзами:

После того, как все модули будут допилены и готовы, можно приступать к сборке. Печатная плата в моём варианте имеет итоговый размер 45 х 58 мм, делал фоторезистивным способом, хотя в виду простоты - лут здесь тоже актуален. Все файлы для платы и прошивки скачайте в общем архиве .

Весь набор необходимых компонентов для устройства.

Сборка метеостанции

Сборка прибора заняла пол часа, после чего был уже вполне работоспособный вариант устройства.

Теперь поделюсь своими секретами. После того, как монтаж ПП закончен, я делаю следующее: смываю все остатки флюса и мусора обычным растворителем, после чего купленной для этих целей зубной щеткой очищаю поверхность от волокон, застрявших между точками пайки в результате отмывки, затем перехожу к следующему процессу- покрытие лаком «медной» стороны ПП. Для этого, сначала, в листе бумаги прорезаю окно по размеру ПП, после чего изолентой приклеиваю ПП к этому листу, как показано на рисунке.

Следующий этап - это нанесение лака, для этого использую обычный, автомобильный аэрозольный лак, который используют для тонирования фар и прочего, стоит такой баллон около 150 рублей, продаётся в любом автомагазине. После высыхания получаю вот такой результат.

Всё, все этапы сборки метеостанции закончены, можно отклеивать бумагу.

А вот и готовый, полностью рабочий вариант устройства.

Подытожу касаемо аппаратной части. Стоимость готового устройства, не считая текстолита и расходных материалов, используемых для изготовления и монтажа ПП, составила около 500 рублей.

Программа

Теперь от аппаратной части к программной. Программа состоит из одного исполняемого exe файла. При первом запуске, программа будет пошагово «просить» произвести необходимые настройки, сначала происходит инициализация COM порта, программа выдаст вот такое окно:

Кроме номера порта, в настройках ничего менять не надо! После выбора порта, необходимо нажать кнопку «повторить попытку » в стартовом окне программы. Следующим этапом программа «попросит» произвести «рабочие» настройки.

Здесь указываются оптимальные границы показаний с датчиков, эти значения влияют на графическое отображение значений в основном окне программы, красная стрелка вверх означает завышенное значение, вниз - заниженное и зелёная галочка - в норме соответственно. Что касается оптимальной границы давления, то как таковой её нет, это значение зависит от географических координат вашего города, а верней высоты, на которой расположен ваш город относительно уровня моря, проще всего границы атмосферного давления можно взять из таблицы высот или методом наблюдения.

По желанию можете указать вариант запуска программы (свёрнутый/ не свёрнутый режим). Есть ещё один раздел - это логин, пароль, частота отправки и галочка разрешить отправку данных на WEB сервер. Здесь немного подробней. Эта настройка, при желании, разрешает отправку значений температуры, влажности и давления на глобальный WEB сервер meteolk.ru - это ресурс созданный специально под этот проект, по сути это просто личный кабинет, где содержится вся информация полученная метеостанцией и ничего кроме этого. Для того чтобы можно было пользоваться этим ресурсом необходимо сначала зарегистрироваться для возможности дальнейшей идентификации пользователя, для этого просто заходите на сайт и нажимаете «Регистрация ». Так сказать пользуйтесь на здоровье, мне не жалко. На странице регистрации указываете имя, логин и пароль.

Всё, на этом регистрация закончена, и учётные данные можно указывать в программе. Это можно сделать и позже, перейдя в настройки через «Меню», не обязательно при первом запуске. После того как будут произведены все настройки, нажимаете сохранить и в окне запуска программы нажимаете кнопку «повторить попытку ». Если всё нормально, то программа запуститься и появится основное окно, после этого создадутся файлы настроек и при последующих запусках, никаких настроек производить уже будет не нужно.

В меню «дополнительно » есть опция «считать данные с контроллера », здесь поясню. Каждые пол часа в оперативку микроконтроллера записываются значения температуры, влажности и давления, всего таких записей может быть 100, если получилось так, что программа не была запущена и вам нужно посмотреть статистику, то при помощи этой опции можно посмотреть данные, это 2-е суток, если таковые есть конечно. При помощи «стереть данные МК» вся собранная ранее статистика и хранящаяся в оперативке - затирается. Помимо текущих, отображаемых значений, есть ещё значения «макс.» и «мин.», это максимальные и минимальные значения, которые были зарегистрированы за время работы программы.
С программой всё, на остальных менюшках не буду останавливаться, думаю, что и так всё интуитивно понятно. Вернусь немного к личному кабинету. После регистрации, можно зайти под своей записью, кстати, можно также зайти под логином «test » и паролем «test », это ради ознакомления. Если у вас есть данные, то вы увидите вот такое окно:

При желании, данные можно посмотреть в графическом варианте, в виде графиков.

Вот и всё. Надеюсь на то, что мой проект вам понравиться и пригодится. Пока-пока! До новых встреч на сайте. Автор Виталий Анисимов . г. Калуга .

Обсудить статью ДОМАШНЯЯ USB МЕТЕОСТАНЦИЯ

Изготовьте и установите на высоком шесте флюгер и расскажите детям, как определять направление ветра. Возьмите гладкую палку и вбейте в один из её концов длинный гвоздь. Вырежьте из плотного картона флажок и заламинируйте его, чтобы не промокал при дожде.

Край флажка оберните вокруг гвоздя так, чтобы он мог свободно вращаться при дуновении ветра. Сделайте из тонких проволочек стрелки, указывающие на юг, север, запад и восток и закрепите их на палке. Флюгер готов. Установите его на вашей метеоплощадке, сориентировав стрелки по сторонам света.

С детьми постарше (6–9 лет) изготовление флюгеров замечательно вписывается в уроки по географии, когда вы рассказываете, как образуются ветра, как использовали знания о них первые мореплаватели, что означают ветры на «конских широтах», что такое пассаты.

Моряки, зная о пассатах - устойчивых ветрах, дующих в тропических поясах, - называли их «торговыми ветрами», потому что с их помощью торговые корабли-парусники (тогда ещё не были изобретены двигатели) пересекали Атлантический океан. На парусниках везли товар из Европы в Америку.

Субтропические ветры между 30 и 38 параллелями южных и северных широт были настолько лёгкими, что парусники вставали в штиль. Приходилось месяцами ждать подходящего ветра. Часто ожидания затягивались на 3–5 месяцев. У моряков заканчивалась пресная вода и еда, и им приходилось питаться лошадьми, которых перевозили в больших количествах из Европы. Поэтому эти широты прозвали «конными».

Используя флюгер, дети отмечают в своих календариках наблюдения за погодой направление, силу и смену ветра. Таким образом мы не просто знакомим их с основными метеорологическими приборами, но и с методикой и техникой наблюдений и обработки результатов.

Термометр своими руками

Установите на метеоплощадке большой термометр и научите детей читать значения температур воздуха. Эта работа является также подготовкой для понимания концепции отрицательных чисел в математике, которая предлагается детям 9–12 лет в школе Монтессори.

Малыши 3–6 лет с удовольствием изготовят собственные термометры из картона и цветных ниток. Для этого:

  1. Посередине белой полоски картона шириной 4–6 см наносят шкалу термометра (выше и ниже нуля).
  2. Соединяют вместе красную и синюю (белую) нити.
  3. В верхнем и нижнем концах шкалы делают отверстия и пропускают через них концы ниток, связав их с обратной стороны.

Сверяясь с настоящим термометром, ребята двигают нить на своих самодельных градусниках, устанавливая и записывая значения температур в календарики погоды.

Гигрометр своими руками

Следующим прибором детской метеостанции является гигрометр - прибор для измерения влажности воздуха. Для его изготовления гигрометра понадобятся:

  • прямоугольный кусок деревянной дощечки или пенопласта;
  • две канцелярские кнопки;
  • скотч;
  • человеческий волос длиной около 10 см;
  • отрезок тонкой проволоки.

Укрепите на дощечке две кнопки на расстоянии примерно 8–10 см. К нижней прикрепите проволоку так, чтобы она могла приходить в движение, то есть нетуго. К верхней кнопке прикрепите кончик волоса, затем протяните его вокруг проволоки и закрепите на верхней кнопке. Прибор готов.

Расскажите детям, как человеческий волос реагирует на влажность воздуха, становясь короче или длиннее. При высокой влажности он удлинится, опустив таким образом стрелку вниз; при низкой влажности, наоборот, волос станет короче и поднимет проволочную стрелку вверх. Это свойство волоса и использовано для изготовления гигрометра.

Осадкомер своими руками

Дополнит вашу метеоплощадку осадкомер - прибор для измерения жидких и твёрдых осадков (града). Возьмите обычное ведро, установите его на небольшой возвышенности (тумбе, табурете). Накапливаемые осадки сливаются в мерный стакан со шкалой. Результаты дети заносят в свои календарики.

Метеостанция, построенная своими руками - это не только часть предметно-развивающей Монтессори-среды, но и увлекательная и познавательная возможность наблюдать за погодой и вести журнал наблюдений.

Обсуждая с детьми погоду, можно расширить тематику и рассказывать им о современных профессиях, зависящих от погодных условий. С детьми постарше (8–9 лет), в рамках Монтессори-программы по экономической географии, мы говорим о том, как климатические условия в целом влияют на экономику разных стран.

(хроно-термо-гигро-барометр)

Как поется в известной песне «Главней всего погода в доме…». Конечно автор под погодой имел ввиду душевное состояние супругов живущих под одной крышей. Но если подходить к этой фразе буквально, то она о том, что под крышей кроме душевного должен быть и климатический комфорт. Предлагаемое устройство обеспечивает измерение и отображение на светодиодном индикаторе температуры и относительной влажности воздуха в помещении, значения атмосферного давления и текущего времени.

Станция снабжена датчиком движения, который включает ее при появлении человека в зоне действия датчика. Этот режим позволяет экономить потребляемую энергию и использовать в качестве источника питания гальванические батареи. Кроме того, этот режим удобно использовать в спальне - выключенный дисплей станции не будет раздражать своим свечением. В этом случае для включения станции будет достаточно выполнить движение рукой или ногой.

Внешний вид станции показан на рисунках (Рисунок 1 и Рисунок 2).

Рисунок 1.
Внешний вид станции

Рисунок 2.
Внешний вид станции (обратная сторона)

Видео с демонстрацией работы станции представлено ниже:


Электрическая схема.

Схема электрическая принципиальная представлена на рисунке 3.

Рисунок 3.
Схема электрическая принципиальная.

Станция собрана на микроконтроллере ATmega8. Цепочка R1С1 обеспечивает начальный сброс (Reset) микроконтроллера при включении. Предусмотрено внутрисхемное программирование МК через разъем XP3 «SPI программатор».
Фьюзы МК ATmega8: HIGH=0xD9, LOW=0xE4.

В качестве дисплея используется четырех-разрядный 7-сегментный индикатор типа CL5642BN c общим анодом и двухточечным («:») разделителем часов и минут. Катоды сегментов индикатора подключены к МК через ограничительные резисторы. МК обеспечивает динамическую индикацию поочередно включая транзисторные ключи VT3…VT6.

Хронометр собран на микросхеме DS1307 по штатной схеме включения. Точность хода часов обеспечивается кварцевым резонатором Y1 с частотой 32768Гц. При отсутствии основного питания (5 Вольт) непрерывность хода часов обеспечивается резервным источником питания на гальваническом элементе CR2032 (3 Вольта). Взаимодействие МК с микросхемой DS1307 осуществляется по шине TWI (I2C). Линии шины TWI «подтянуты» к питанию VCC2 резисторами R20, R21. Установка часов и минут обеспечивается кнопками SA1 («Часы+»), SA2 («Минуты+»), SA3 («Установка»). При этом необходимо в момент начала цикла отображения данных на дисплее нажать и удерживать кнопку «Установка». Нажатием или нажатием с удержанием кнопок «Часы+» или «Минуты+» устанавливается время хронометра. При отпускании кнопки «Установка» в микросхему DS1307 в соответствующие ячейки запишутся значения часов и минут, отображенные на дисплее, а в ячейку секунд запишется значение 0. Таким образом можно точно синхронизировать время с внешними эталонными источниками точного времени (например, от вещательных радиостанций или телевидения).

К шине TWI также подключена плата барометра BMP180. Программа устройства считывает калибровочные коэффициенты, устанавливаемые производителем, и учитывает их при расчете атмосферного давления.

Измерение температуры осуществляется датчиком DHT11. МК управляет датчиком по последовательному однопроводному двунаправленному интерфейсу. Линия интерфейса «подтянута» к питанию VCC2 резистором R19.

Для экономного расходования энергии батарей микроконтроллер большую часть своего времени пребывает в состоянии глубокого сна («power-down»). При этом МК перед засыпанием обесточивает все измерительные датчики, подключенные к VCC2 (хронометр, датчик атмосферного давления, датчик влажности и температуры). Обесточивание датчиков обеспечивается ключами на транзисторах VT1 и VT2.

Для пробуждения МК в схему станции включен датчик движения HC-SR501. Его задача - вывести МК из состояния сна. При срабатывании датчик посылает сигнал МК, который пробуждается сам и подает питание VCC2 на периферийные датчики (хронометр, датчик атмосферного давления, датчик влажности и температуры). Ключ на транзисторе VT7 обеспечивает инверсию сигнала датчика движения для согласования с МК. Переключатель «Движение» позволяет отключить датчик движения, для еще большей экономии энергии батарей. В этом случае альтернативную команду на пробуждение МК можно подать нажатием кнопки «Установка».

Питание станции осуществляется от двух альтернативных типов источников: от трех батарей типа АА или от сетевого источника питания 5 Вольт по шине USB. Для переключения между источниками питания необходимо установить переключатель «Питание» в одно из положений: «USB» или «Батарея». При питании от батарей ток потребления станции в режиме сна составляет не более 200мкА, что при емкости батареи 2000мАч соответствует 10000 часам (более одного года) непрерывной работы.

При выборе сетевого источника питания следует учитывать, что пиковый ток потребления станции (во время измерения и при включенном дисплее) не превышает 100мА. Поэтому можно использовать практически любое зарядное устройство.

При питании от шины USB иногда целесообразно обеспечить постоянное измерение значений датчиками и отображение данных на дисплее. Для этого необходимо установить переключатель «Дисплей» в положение «Вкл». В этом случае МК не будет переводится в состояние сна.

Печатные платы.

Печатные платы разработаны в программе Dip Trace. Они выполнены на одностороннем фольгированном стеклотекстолите. Расположение деталей на основной печатной плате показано на рисунке (Рисунок 4). На рисунке перемычки со стороны монтажа выделены цветными ломаными линиями. Печатная плата со стороны дорожек показана на рисунке (Рисунок 5).

Рисунок 4.
Печатная плата (вид со стороны радиодеталей).

Рисунок 5.
Печатная плата (вид снизу, зеркальное отображение).

Кнопки и переключатели пульта управления станцией установлены на отдельной печатной плате (Рисунок 6 и Рисунок 7).

Рисунок 6.
Печатная плата Пульта управления (вид сверху).

Рисунок 7.
Печатная плата Пульта управления (вид со стороны дорожек).

Гнездо для подключения USB кабеля установлено на отдельной плате, купленной на AliExpress (Рисунок 8).

Рисунок 8.
Плата с гнездом USB.

Монтаж.

Станция смонтирована в корпусе универсальной коробки для кабельных каналов «Промрукав» - IP42; 400V; полистирол ГОСТ Р 50827.1-2009 ТУ 3464-001-97341529-2012 Артикул 40-0460.

На передней стороне корпуса прорезаны окна для дисплея и датчика движения. На тыльной стороне корпуса размещен датчик влажности и температуры DHT11, кнопки и переключатели пульта управления.

Батарея питания - три элемента AA 1.5 Вольт каждый размещены в специализированном держателе - «кроватке» .

Размещение радиодеталей на печатной плате показан на рисунке (Рисунок 9).

Рисунок 9.
Внешний вид размещения деталей на плате.

Архив к статье «CTBH.rar» содержит:

1. Папку CTBH - файлы проекта на Си в среде Atmel Studio 7.
2. CTBH.dch - схема электрическая принципиальная в формате Dip Trace.
3. CTBH.dip - печатная плата устройства в формате Dip Trace.
4. CTBH_Buttons.dip - печатная плата Пульта управления в формате Dip Trace.
5. CTBH.hex - загрузочный файл для МК.

Удачи Вам в творчестве и всего наилучшего!

Скачать архив.