Какой физический смысл баллистической постоянной. Определение емкости конденсатора баллистическим гальванометром. Описание электрической схемы

Упражнение 3

Определение периода и логарифмического декремента затухания колебаний рамки

Измерения. 1.Установите начальные значения сопротивлений согласно рекомендациям к упр.3.

2.С помощью потенциометра R получите отклонение «зайчика» 80-100 мм.

3.Разомкните выключатель В2 (сопротивление в цепи гальванометра при этом становится бесконечно большим), «зайчик» вернется к нулю шкалы и совершит при этом несколько затухающих колебаний. Определите по секундомеру продолжительность 2-3 полных колебаний с целью определить их «период». Повторите эту процедуру не менее трех раз, чтобы иметь возможность найти среднее значение периода свободных колебаний Т 0 и их циклическую частоту 0  Т 0 .

4.Измерьте наибольшие отклонения двух следующих друг за другом колебаний «зайчика» А к и А к+1 по одну сторону от нуля (лучше – справа). По измеренным результатам определите логарифмический декремент затухания колебаний d рамки гальванометра при бесконечном сопротивлении.

5.Замкните В2 , теперь цепь гальванометра содержит установленное вначале сопротивление R 1 , а также R 2 и r другие. Включая и выключая ток в гальванометре переключателем П , снимите зависимость логарифмического декремента затухания по мере уменьшения R 1 до тех пор, пока колебания «зайчика» имеют место. Результаты запишите в табл.2.

Таблица 2

R 1

A k

A k+1

6.Постройте график зависимости 1/ d = f (R 1 ) . Следует ожидать линейный вид этой зависимости. Если экстраполировать график 1/ d 0 , то он пересекает ось абсцисс при R 1 R , что дает возможность определить критическое сопротивление (9) еще одним способом. Действительно, при критическом сопротивлении в цепи гальванометра движение рамки к положению равновесия происходит без колебаний, апериодически, что можно интерпретировать как «колебания» с очень большим декрементом затухания.

R кр = R + R 2 + r .

Сравнить критическое сопротивление, определенное этим способом и тем, который использован в упр.2.

Упражнение 4

Определение баллистической постоянной гальванометра и электроёмкости конденсатора

Баллистический режим работы гальванометра (на физическом жаргоне – баллистический гальванометр , здесь уместна аналогия с баллистическим маятником) применяется для измерения величины электрического заряда q , прошедшего по цепи при кратковременном импульсе тока, например, при разряде конденсатора. Предполагается, что длительность импульса много меньше периода свободных колебаний рамки гальванометра . При таком допущении очевидно, что весь заряд пройдет через рамку за столь короткое время, что она не успеет отклониться. Рамка, однако, при этом получает толчок, от величины которого зависит угол, на который она повернется, значит угол пропорционален заряду q .

где – баллистическая постоянная при бесконечном сопротивлении в цепи рамки гальванометра. При таком условии торможение рамки минимальное (см. упр.3).

Из формулы (13) вытекает определение баллистической постоянной

, (14)

г

де n – максимальное число делений шкалы, на которое отклоняется «зайчик» при “проскакивании” через рамку заряда q (первый баллистический отброс).

Баллистическую постоянную можно определить экспериментально, используя для этого конденсатор с известной емкостью С 0 (эталонный), включив его в электрическую цепь, схема которой приведена на рис.2.

Эталонный конденсатор заряжается до разности потенциалов U 0 от источника тока (переключатель П в положении 1 ), затем разряжается через гальванометр G (переключатель П в положении 2 ). Электрический заряд

q = C 0 U 0 (15)

протекает через рамку гальванометра. Подставляя заряд (15) в формулу (14), получим выражение для определения баллистической постоянной:

. (16)

Если вместо конденсатора С 0 включить другой конденсатор с неизвестной емкостью С 1 и зарядить его до разности потенциалов U 1 , то знание баллистической постоянной дает возможность определить емкость С 1 по формуле

. (17)

Измерения. 1.Замкните демпфер В д в целях предохранения гальванометра.

2.Соберите электрическую цепь по схеме (рис.2) и предложите преподавателю или лаборанту проверить ее.

3.Замкните выключатель В1 и установите напряжение U 0 =0,50 В.

4.Переключателем П подключите конденсатор к источнику питания (переключатель в положении 1 ), в результате чего он зарядится до 0,50 В.

5.Разомкните демпфер В д и проверьте, находится ли световой указатель на нулевой отметке шкалы. Если нет, то добейтесь этого. Как это можно сделать?

6.Переведите переключатель в положение 2 и засеките на шкале наибольшее отклонение «зайчика» – n 0 .

7.Результаты измерений n 0 при трех различных напряжениях U 0 внесите в табл.3.

Таблица 3

U 0

n 0

U 1

n 1

C 1

8.Включите вместо С 0 конденсатор неизвестной емкости С 1 и проведите с ним аналогичные измерения баллистических отбросов n 1 (п.3-6).

9.Обработка результатов сводится к вычислению баллистической постоянной по формуле (16) и определение емкости С 1 по формуле (17), а также определению ширины доверительного интервала по Стьюденту.

10.Проверьте, выполняется ли следующее равенство:

.

Его существование обосновано в пособии , там это формула (66). Напоминаем также, что С I чувствительность к току, T 0 – период свободных колебаний рамки (см. упр.1 и 3). Эта проверка является одним из элементов контроля за правильностью измерений и вычислений параметров гальванометра.

Упражнение 5

Определение баллистической постоянной

Когда к гальванометру присоединен конденсатор, то сопротивление этой цепи действительно очень большое. Но возможна и другая ситуация.

П
усть к гальванометру присоединена катушка, в которой возбуждается короткий импульс. В этом случае импульс проходит по цепи, в том числе и через гальванометр, но сопротивление ее не такое большое как с конденсатором, скорее даже малое. Рассмотрим цепь, схема которой приводится на рис.3. В цепь гальванометра входит катушка с индуктивностью L 1 и активным сопротивлением r 1 , а также магазин сопротивлений R 1 . Приведенная схема отличается от рассмотренной выше (упр.4) тем, что здесь сопротивление в цепи гальванометра во-первых, не бесконечное и таковым оно быть не может , во-вторых, его можно изменять за счет R 1 . А это значит, что в зависимости от величины сопротивления характер движения рамки к положению равновесия и около него становится разным и этот выбор в руках экспериментатора. В данных условиях наиболее благоприятным является релаксационное движение критического характера. Для этого сопротивление цепи гальванометра должна быть критическим R кр , величина которого определена в упр. 2 и 3. Поэтому на магазине R 1 надо установить

R 1 = R кр – (r+r 1 ) .

Рассмотрим реакцию гальванометра на импульс тока в цепи, обладающей критическим сопротивлением. Если в катушке L 1 с числом витков w 1 за dt секунд изменить магнитный поток на d , то в катушке будет наведена ЭДС индукции.

.

Возникший под действием ее индукционный ток i создаст в катушке L 1 ЭДС самоиндукции

.

Согласно второму правилу Кирхгофа алгебраическая сумма падений напряжения в замкнутом контуре равна алгебраической сумме ЭДС.

Разделив переменные и проинтегрировав получившееся уравнение, будем иметь следующее решение:

,

где q = i – суммарный электрический заряд, прошедший по цепи (в том числе и через гальванометр) за время действия импульса тока длительностью ,

2  1 – изменение магнитного потока за время .

Отсюда можно узнать величину заряда,

. (19)

Прохождение заряда q через гальванометр вызывает поворот рамки на угол , пропорциональный заряду,

Приравнивая выражения (19) и (20), получим для баллистической постоянной гальванометра в цепи, имеющей критическое сопротивление, следующую формулу:

. (21)

Баллистические постоянные гальванометра и отличаются друг от друга, так как каждая из них присуща определенным и не совместимым условиям работы гальванометра, в то же время они связаны между собой, так как это характеристики одного прибора. Доказывается во , формула (70), что

Как найти практически? Для этого собирается цепь, содержащая гальванометр и две индуктивно связанные катушки: одна – длинный однослойный соленоид L 0 , вторая – короткая четырехсекционная катушка L 1 , надетая поверх соленоида.

При прохождении тока I по соленоиду создается магнитное поле, напряженность которого на оси соленоида равна Н , индукция В и магнитный поток

,

где l 0 , S 0 – длина и площадь поперечного сечения соленоида.

Такой же магнитный поток пронизывает и вторую катушку L 1 , обозначим его 1 . Если направление тока в соленоиде изменить на противоположное, то магнитный поток изменит знак 2 = – BS 0 .

Таким образом, изменение магнитного потока через вторую катушку равно

, (23)

а после подстановки

. (24)

Выражение для баллистической постоянной (21) можно записать в виде:

[Кл/(мм/м)]. (25)

Знак минус опущен, так как он определяет, в какую сторону повернется рамка гальванометра, но не влияет на величину угла поворота.

Величина

[Вб/(мм/м)] (26)

называется баллистической постоянной по магнитному потоку .

Измерения. 1.Соберите электрическую цепь по схеме на рис.3, включив в нее в качестве катушки L 1 одну их четырех секций, содержащую w 1 витков. Демпфер В д при сборке как всегда должен быть замкнут.

2.Предложите преподавателю или лаборанту проверить собранную цепь.

3.Установите на магазине R 1 критическое сопротивление.

4.Установите в цепи соленоида небольшой ток I , потом его, возможно, придется изменить.

5.Переводя переключатель П из одного положения в другое, измерьте максимальный баллистический отброс «зайчика» n . Это надо сделать при трех различных токах I . Результаты впишите в табл.4.

Таблица 4

6.Вычислите и по формулам (25), (26), найдите средние значения каждой из них и ширины доверительных интервалов по Стьюденту как для прямых измерений. Проверьте выполнение условия (22)

7.На основании результатов, полученных в упр. 1…5, сделайте сводную таблицу метрологических параметров исследованного гальванометра.

Сводка метрологических параметров гальванометра М17, № ………… .

Постоянная по току

c I

Постоянная по напряжению

c U

Внутреннее сопротивление

Критическое сопротивление

R kp

Период колебания

T 0

Частота свободных колебаний

Баллистическая постоянная

Баллистическая постоянная

Баллист.постоян. по магн. потоку

Упражнение 6

Определение горизонтальной и вертикальной составляющих напряженности магнитного поля Земли

В предлагаемом ниже упражнении есть возможность применить всесторонне исследованный гальванометр для решения практической задачи – определения напряженности магнитного поля Земли, используя высокочувствительный гальванометр в баллистическом режиме. Идея опыта проста. Пусть в магнитном поле Земли находится замкнутый контур, в состав которого входит гальванометр. Если изменить ориентацию контура в пространстве так, чтобы магнитный поток через него тоже изменился, то в контуре возникнет ЭДС индукции и импульс индукционного тока приведет к отклонению указателя гальванометра.

Д
ля проведения такого опыта берется катушка L 2 на кольцевом каркасе, находящаяся на вращающейся подставке. Вектор напряженности магнитного поля Земли расположен в плоскости магнитного меридиана под углом к горизонту (рис.4), где – магнитное наклонение (в нашей местности можно принять приблизительно равным географической широте) .

Если катушку поворачивать, например, вокруг оси z , то поток вектора Н г через площадь, охваченную контуром, будет изменяться, что приведет к возникновению ЭДС индукции, равную, в соответствии с законом Фарадея, E = d / dt .

2
.Установите на магазине R 1 сопротивление

.

3.Определите по компасу плоскость магнитного меридиана S–N и поставьте плоскость кольцевой катушки перпендикулярно этому направлению.

4.Разомкните демпфер. Поверните катушку вокруг вертикальной оси на 180, наблюдайте отклонение «зайчика» на шкале. Этот опыт надо проделать не менее пяти раз, замечая каждый раз максимальный баллистический отброс. Постарайтесь поворачивать катушку настолько быстро, чтобы длительность поворота была меньше периода свободных колебаний рамки гальванометра, что связано с необходимым условием кратковременности импульса тока в цепи. Результаты измерений внесите в табл.5.

5.Проведите аналогичные измерения при вращении катушки вокруг горизонтальной оси, установив ее предварительно горизонтально.

6.Измерьте диаметр катушки, это понадобится для вычисления ее площади S 2 , и спишите число витков w 2 той секции, которая была включена в цепь.

Обработка результатов состоит в вычислении горизонтальной и вертикальной составляющих напряженности поля Земли по формуле

. (27)

Таблица 5

Вращение вокруг вертикальной оси

Вращение вокруг горизонтальной оси

n 1

Н г

n 2

Н в

По средним значениям Н г и Н в вычислите полную напряженность магнитного поля Земли и сравните ее со значением, найденным в литературе.

1.Курс электрических измерений. /Под ред. В.Г.Прыткова, А.В.Талицкого. М.-Л.: Гос. энергетич. изд., 1960. Ч.1, гл. 5.

2.Оборудование электрической лаборатории. Изд. Перм. ун-та, 1976. §15-16.

3.Руководство к лабораторным занятиям по физике./Под ред. Л.Л.Гольдина. М.: Наука, 1973. С.274.

4.Сивухин Д.В. Общий курс физики. М.: Наука, 1977. Т.3, с.556.

5.Кортнев А.В., Рублев Ю.В., Куценко А.Н. Практикум по физике. М.: Высшая школа, 1963. С.232.

ИсследованияхКурсовая работа >> Химия

Заменить другим. Основные области применения хрома – декоративная защита, ... электроды; пучок лучей, отраженных зеркальным гальванометром , устанавливают вблизи левого края... компонентов процесса хромирования Объект исследования : твердые отходы гальванических...

Лабораторная работа №16

ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА С ПОМОЩЬЮ БАЛЛИСТИЧЕСКОГО ГАЛЬВАНОМЕТРА

Цель работы

    Освоить метод баллистического гальванометра.

    Определить емкость отдельных конденсаторов и их соединений в батарею.

    Проверить справедливость теоретических формул для расчета емкости батареи конденсаторов при их последовательном и параллельном соединениях.

Теоретическое введение

Конденсатор – это два проводника, разделенные слоем диэлектрика, имеющие заряды, равные по величине и противоположные по знаку, и расположенные так, что поле, создаваемое зарядами на проводниках, сосредоточено преимущественно в пространстве, защищенном самими проводниками от внешних электрических полей. Проводники, образующие конденсатор, называются его обкладками.

Емкость конденсатора определяется формулой:

где q - заряд конденсатора, равный модулю заряда одной из обкладок; Δφ - разность потенциалов между обкладками.

Емкость конденсатора - это физическая величина, численно равная заряду, который нужно перенести с одной обкладки на другую, для того, чтобы разность потенциалов между ними изменилась на единицу.

Емкость конденсатора не зависит от заряда на его обкладках, разности потенциалов между ними, а также от расположения окружающих тел. Она определяется формой конденсатора (сферический, цилиндрический, плоский), геометрическими размерами и наличием диэлектрика между обкладками.

Емкость плоского конденсатора прямо пропорциональна площади его обкладок S , диэлектрической проницаемости среды ε , обратно пропорциональна расстоянию d между обкладками:

, (2)

где ε 0 - электрическая постоянная (ε 0 = 8,85 ∙ 10 -12 Ф/м).

Емкость измеряется в фарадах (Ф): 1Ф = 1Кл/В, а также в микрофарадах 1мкФ = 10 -6 Ф, в пикофарадах 1пФ = 10 -12 Ф.

Для получения необходимой емкости конденсаторы соединяют последовательно и параллельно в батареи.

При последовательном соединении (рис.1) заряд на всех конденсаторах одинаков, а разность потенциалов на батарее Δφ AB равна сумме разностей потенциалов на каждом конденсаторе: Δφ AB = Δφ 1 + Δφ 2 +…+ Δφ n .

Выразив значения разности потенциалов через заряд и емкости конденсаторов, получаем:

, или
, (3)

где C - емкость батареи; С 1 , С 2 , …, С n – емкости отдельных конденсаторов.

При параллельном соединении (рис. 2) разность потенциалов на конденсаторах одинакова Δφ AB = Δφ 1 =Δφ 2 =…= Δφ n , а полный заряд батареи равен сумме зарядов на каждом конденсаторе q = q 1 + q 2 + … + q n .

Выразив значения зарядов через емкости и разности потенциалов, получаем:

С Δφ = С 1 Δφ +С 2 Δφ +…+С n Δφ ,

или С = С 1 + С 2 + … + С n , (4)

где С – емкость батареи; С 1 , С 2 , …, С n – емкости отдельных конденсаторов.

В данной работе для измерения емкостей отдельных конденсаторов и их соединений применяется баллистический гальванометр.

Гальванометрыпредназначаются для работы в качестве измерителей, показывающих наличие или отсутствие тока (в компенсационных схемах), и в качестве приборов для измерения силы тока, напряжения, количества электричества и т. д.

Баллистический гальванометр- это высокочувствительный прибор магнитоэлектрической системы с повышенным моментом инерции подвижной части.

Баллистический гальванометр оформлен в литом металлическом корпусе и установлен в вертикальной плоскости на стене вместе с осветительным и отсчетным устройством (рис. 3), т.е. лампой и шкалой, отстоящими от металлического корпуса на расстояние 1,50 м. Шкала из матового стекла расположена параллельно стене (рис. 4).

Рис.4. Внешний вид осветителя с отсчетным устройством типа П31, скомплектованного для отсчета в вертикальной плоскости (шкала параллельна стене).

Рис.3. Схема вертикальной установки гальванометра

Принцип действия прибора основан на взаимодействии магнитного поля, создаваемого постоянным магнитом, с током, протекающим по обмотке рамки. В результате взаимодействия возникает вращающий момент, поворачивающий рамку с током, на которой укреплено облегченное алюминиевое зеркало. Максимальный угол поворота рамки прямо пропорционален электрическому заряду, протекшему через нее.

Отсчет угла поворота рамки производится с помощью светового указателя. На зеркало рамки падает луч света от осветителя, а отраженный от зеркала луч падает на шкалу.

Величина максимального смещения светового луча по шкале отсчетного устройства является мерой измеряемой величины (нуль шкалы находится в ее середине).

Название "баллистический" означает, что при измерении отсчитывается так называемый баллистический отброс (максимальное отклонение), после которого подвижная часть постепенно возвращается в нулевое положение.

В данной работе баллистический гальванометр применяется для измерения емкости конденсатора, поэтому его необходимо предварительно проградуировать, т. е. определить его баллистическую постоянную К б:

, (5)

где q – заряд, протекший через рамку; n – максимальное отклонение светового луча по шкале.

Баллистическая постоянная показывает, какой заряд (в кулонах) протекает через рамку при смещении светового “зайчика” на одно деление шкалы (при заданном расстоянии между шкалой и зеркалом рамки).

При прохождении заряда q через рамку баллистического гальванометра за время, значительно меньшее периода ее собственных колебаний, световой “зайчик” сместится по шкале на n делений. Заряд, прошедший через рамку баллистического гальванометра при этом пропорционален величине n .

q = К б n , (6)

Для определения заряда q применяют эталонный конденсатор известной емкости С эт, который при напряжении U накапливает заряд q :

q = C эт U , (7)

Следовательно, баллистическую постоянную К б можно определить по формуле:

, (8)

Если баллистическая постоянная известна, то с помощью баллистического гальванометра определяют емкости отдельных конденсаторов и емкости батареи при их последовательном и параллельном соединении по формуле:

, (9)

где U – напряжение на обкладках конденсатора; n – смещение светового “зайчика” по шкале.

Описание установки и метода

Для определения баллистической постоянной К б и емкости конденсатора С х собирают цепь по схеме (рис. 5). Здесь PA – баллистический гальванометр; C – эталонный или исследуемый конденсатор; PU – вольтметр; GB – источник постоянного напряжения; S – переключатель.

Если переключатель S установить в верхнее по схеме положение, то конденсатор заряжается, а если в нижнее - то конденсатор разряжается через гальванометр; при этом световой луч (“зайчик”) отклоняется по зеркальной шкале. В качестве результата измерения надо брать первое наибольшее отклонение “зайчика”.

Порядок выполнения работы и обработка результатов измерения

Задание 1. Определение баллистической постоянной гальванометра.

    Соберите цепь по схеме (рис. 5).

    Подсоедините эталонный конденсатор С эт, емкость которого указана на установке.

    Включите осветитель гальванометра в сеть.

    Определите начальное положение n 0 риски на шкале. Отсчет величины отклонения светового "зайчика" производите относительно этого деления.

    Установите по вольтметру PU напряжение по указанию преподавателя.

    Подключите конденсатор к источнику питания (ручку переключателя S на стенде установите в левое положение) и через 2 - 3 секунды разрядите его на гальванометр (ручку переключателя S установите в правое положение) одновременно отмечая максимальное деление шкалы n, до которого отклонится световой “зайчик”.

    Повторите аналогичные измерения по пятому пункту не менее трех раз для различных значений напряжений U , заданных преподавателем.

    По полученным данным, пользуясь формулой (8), определите К б.

    Результаты измерений и расчетов занесите в таблицу 1.

Таблица 1

n 1 , мм

n 2 , мм

n 3 , мм

<n >, мм

К б, Кл/мм

<К б >,

Δ К б,

,

где ΔU = 0,1 В; Δn = 5 мм; Δ С эт – указана на установке.

10.Ответ представьте в виде: К б = <К б > ± Δ К б.

Задание 2 . Определение емкости конденсаторов

    Включите в собранную схему конденсатор измеряемой емкости C x в /Включите в собранную схему конденсатор измеряемой ёмкости С х вместо С эт.

    Включите осветитель гальванометра.

    Установите по вольтметру PU напряжение U, заданное преподавателем.

    Подключите конденсатор к источнику тока и через 2-3 секунды разрядите его через гальванометр, одновременно отмечая максимальное деление (n ) шкалы, до которого отклонится световой “зайчик “.

    Повторите аналогичные измерения не менее 3-х раз для различных значений напряжения U (по указанию преподавателя).

    По полученным данным, пользуясь формулой (9), определите C x (<K б > взять из таблицы 1).

    Тем же методом определите емкость других конденсаторов (C y или C z по указанию преподавателя).

Задание 3. Определить емкости батарей из двух конденсаторов.

      Соедините конденсаторы C x и C y (или C x и C z) последовательно в батарею (рис.1).

      Методом, приведенным в задании 2, определите емкости C xy (или C xz) батареи при последовательном соединении.

      Соедините те же конденсаторы параллельно в батарею.

      Определите емкость C xy (или C xz) батареи при параллельном соединении.

      Результаты измерений и расчетов занесите в таблицу 2.

Таблица 2

Конденсатор неизвестной емкости

n 1 , мм

n 2 , мм

n 3 , мм

<n >, мм

<C >, Ф

Δ С , Ф

C y (или C z)

Батарея C xy (C xz) последовательно

Батарея C xy (C xz) параллельно

.

      Результаты расчетов представьте в виде:

C x = <C x > ± Δ C x и т. д.

      Сравните результаты опытов при последовательном и параллельном соединении конденсаторов с результатами вычисления емкости батарей по теоретическим формулам (3) и (4).

10. Оформите вывод по анализу опытных и расчетных данных, занесенных в таблицы. В выводе отразить следующие положения:

        зависит ли баллистическая постоянная K б от напряжения на эталонном конденсаторе и его емкости C эт?

        как увеличение напряжения на конденсаторе влияет на отброс светового луча по шкале и почему?

        зависят ли емкости C x , C y , C xy (послед.), C xy (паралл.) от напряжений на них?

        как согласуются значения экспериментально полученных емкостей батарей конденсаторов при последовательном и параллельном соединениях с результатами вычисления по формулам?

Контрольные вопросы

    Каков принцип действия баллистического гальванометра?

    Каков физический смысл баллистической постоянной?

    Что называется емкостью уединенного проводника? Конденсатора?

    Что называется взаимной емкостью двух проводников?

    Чем отличается емкость конденсатора от емкости уединенного проводника?

    Выведите формулу емкости батареи конденсаторов при последовательном и параллельном соединениях.

    В каких случаях следует применять тот или иной способ соединения конденсаторов в батарею?

    Объясните метод определения емкости с помощью баллистического гальванометра.

    Трофимова Т.И.: Курс физики, М.: Высшая шк., 2003. - §§ 93, 94.

    Детлаф А.А., Яворский Б.М. Курс физики, М.:, Высшая шк., 1999. –

    Савельев И.В. Курс физики: том 2, М.: Наука, 1988 - §§ 26, 27.

    Грабовский Р.И. Курс физики, М.: Высшая шк., 1980. Часть 2 - §§ 7, 10.

Конденсатор - система из двух или более проводников (обкладок), разделенных диэлектриком, обладающая способностью накапливать большое количество электричества (электрического заряда). Основной характеристикой конденсатора является его электрическая емкость С .

Емкость определяется отношением заряда q на положительной обкладке конденсатора к разности потенциалов между обкладками U :

C = q / U . (1)

В СИ электрическая емкость измеряется в фарадах: 1Ф = 1 Кл/В.

Конденсаторы объединяют в батарею, соединяя их параллельно (рис. 1) или последовательно (рис. 2).

складывается из напряжения на каждом конденсаторе. В этом случае их общая емкость определяется по формуле:

С общ = (1/С 1 + 1/С 2 +…+ 1/С N ) –1 . (3)

В лабораторной работе емкость конденсатора определяется с помощью баллистического гальванометра - высокочувствительного прибора с большим периодом собственных колебаний рамки. При кратковременном токе отклонение рамки пропорционально электрическому заряду q , прошедшего через гальванометр:

q = A n ,

где A (Кл/дел) - баллистическая постоянная гальванометра; n - количество делений, на которое отклоняется индикатор (зайчик) по шкале гальванометра.

Описание лабораторной установки

В лабораторной установке (рис. 3) ключ К 1 подключает внешнее напряжение. Источником питания конденсатора служит потенциометр R (делитель напряжения). Значение напряжения контролируется вольтметром V . Конденсатор С заряжается от источника питания, если ключ находится в положении 1 , и разряжается через гальванометр G при переводе ключа К 2 в положение 2 .

Порядок выполнения работы

Задание 1. Определение баллистической постоянной с помощью эталонного конденсатора.

1. Получить допуск у преподавателя и приступить к измерениям.

2. Включить ключ К 1 , ключ К 2 установить в положение 1 .

3. Потенциометром установить заданное преподавателем напряжение U .

4. Перевести ключ К 2 в положение 2 n

n 1 = n 2 = n 3 =

5. Найти среднее значение отклонения «зайчика»:

n ср = (n 1 + n 2 + n 3)/3 =

6. Определить баллистическую постоянную:

A = C э U / n ср =

где C э - заданная преподавателем эталонная емкость.

Задание 2. Определение неизвестной емкости конденсатора.

1 конденсатор

1. Включить ключ К 1 , ключ К 2 установить в положение 1 .

U .

3. Перевести ключ К 2 в положение 2 и определить величину отклонения светового «зайчика» n . Повторить измерения три раза.

n 1 = n 2 = n 3 =

n ср = (n 1 + n 2 + n 3)/3 =

C = A×n ср /U =

где U

dС = dU + Dn / n ср =

где dU n

DС = C dС =

Записать результат в виде: C = C экспер ± DС

С = ± .

2 конденсатор

1. Включить ключ К 1 , ключ К 2 установить в положение 1 .

2. Потенциометром установить заданное преподавателем напряжение U .

3. Перевести ключ К 2 в положение 2 и определить величину отклонения светового «зайчика» n . Повторить измерения три раза.

n 1 = n 2 = n 3 =

4. Найти среднее значение отклонения «зайчика»:

n ср = (n 1 + n 2 + n 3)/3 =

5. Определить емкость конденсатора

C = A×n ср /U =

где U - напряжение, до которого заряжен конденсатор.

6. Вычислить относительную погрешность измерения емкости:

dС = dU + Dn / n ср =

где dU - относительная погрешность определения напряжения (см. лаб. работу 1); Dn - половина цены наименьшего деления шкалы гальванометра.

7. Вычислить абсолютную погрешность измерения емкости:

DС = C dС =

Записать результат в виде: C = C экспер ± DС

С = ± .

Задание 3. Определение емкости последовательно соединенных конденсаторов.

По заданию преподавателя соединить конденсаторы, емкости которых были определены в задании 2, последовательно.

1. Включить ключ К 1 , ключ К 2 установить в положение 1 .

2. Потенциометром установить заданное преподавателем напряжение U .

3. Перевести ключ К 2 в положение 2 и определить величину отклонения светового «зайчика» n . Повторить измерения три раза.

n 1 = n 2 = n 3 =

4. Найти среднее значение отклонения «зайчика»:

n ср = (n 1 + n 2 + n 3)/3 =

5. Определить емкость конденсатора

C = A×n ср /U =

где U - напряжение, до которого заряжен конденсатор.

6. Вычислить относительную погрешность измерения емкости:

dС = dU + Dn / n ср =

где dU - относительная погрешность определения напряжения (см. лаб. работу 1); Dn - половина цены наименьшего деления шкалы гальванометра.

7. Вычислить абсолютную погрешность измерения емкости:

DС = C dС =

Записать результат в виде: C = C экспер ± DС

С = ± .

Задание 4. Определение емкости параллельно соединенных конденсаторов.

По заданию преподавателя соединить конденсаторы, емкости которых были определены в задании 2, параллельно.

1. Включить ключ К 1 , ключ К 2 установить в положение 1 .

2. Потенциометром установить заданное преподавателем напряжение U .

3. Перевести ключ К 2 в положение 2 и определить величину отклонения светового «зайчика» n . Повторить измерения три раза.

n 1 = n 2 = n 3 =

4. Найти среднее значение отклонения «зайчика»:

n ср = (n 1 + n 2 + n 3)/3 =

5. Определить емкость конденсатора

C = A×n ср /U =

где U - напряжение, до которого заряжен конденсатор.

6. Вычислить относительную погрешность измерения емкости:

dС = dU + Dn / n ср =

где dU - относительная погрешность определения напряжения (см. лаб. работу 1); Dn - половина цены наименьшего деления шкалы гальванометра.

7. Вычислить абсолютную погрешность измерения емкости:

DС = C dС =

Записать результат в виде: C = C экспер ± DС

С = ± .

Рассчитайте теоретическое значение емкости

С теор = С 1 + С 2 =

Контрольные вопросы

1. Что такое электрический конденсатор?

2. Что такое емкость конденсатора?

3. Единицы измерения емкости в СИ.

4. Почему емкость батареи параллельно соединенных конденсаторов равна сумме емкостей каждого?

5. Почему заряд на обкладках любого конденсатора при последовательном соединении будет одинаков?

6. Как определить емкость батареи последовательно соединенных конденсаторов?

Лабораторная работа 4

Существуют различные методы измерения емкости: метод амперметра-вольтметра, мостовой метод, метод баллистического гальванометра, по времени разряда конденсатора через резистор известного сопротивления, резонансный метод и др. Рассмотрим их более подробно.

Одним из наиболее простых является метод амперметра-вольтметра. Он основан на измерении емкостного сопротивления конденсатора, которое обратно пропорционально емкости и частоте электрического тока: ,

Следовательно, для измерения емкости этим методом необходимо знать частоту напряжения, подаваемого от источника питания.

Баллистическими называют чувствительные гальванометры, у которых период собственных колебаний рамки очень большой. В баллистическом режиме может работать любой прибор магнитоэлектрической системы, если ток в цепи прибора протекает в течение времени, во много раз меньшего периода собственных колебаний его подвижной рамки. При разряде конденсатора через баллистический гальванометр отброс стрелки гальванометра пропорционален протекающему через него заряду. Проведем следующий эксперимент. Зарядим конденсатор до напряжения U и, разрядив его через гальванометр, заметим величину отброса стрелки. Повторим опыт, увеличивая напряжение в 2, 3 и т.д. раз. Каждый раз отношение напряжения к числу делений, на которые отклонялась стрелка, будет величиной постоянной. Затем, не изменяя напряжения, проведем эксперимент с конденсаторами емкостью C, 2С, 3С и т.д. Обнаружим, что отношение емкости конденсатора к числу делений, на которые отклонилась стрелка, тоже величина постоянная.

Баллистическая постоянная гальванометра - это отношение заряда q, протекшего через рамку гальванометра, к числу делений n, на которое отклонилась стрелка: k = q/n. Для определения баллистической постоянной несколько раз проводят опыт с конденсаторами известной емкости. Заряд конденсатора рассчитывается по формуле q = CU, где q - заряд на одной из обкладок конденсатора, C - емкость конденсатора, а U - напряжение между обкладками конденсатора. Тогда k = CU/n. Из нескольких опытов при различных напряжениях между обкладками конденсатора и различных значениях емкости определяют среднее значение баллистической постоянной гальванометра.

Затем включают в цепь конденсатор неизвестной емкости и повторяют опыт. Зная баллистическую постоянную и число делений, на которое отклонилась стрелка гальванометра, определяют емкость: Cx = kn/U.

Для измерения емкости можно использовать любой прибор магнитоэлектрической системы при условии, что произведение емкости конденсатора на внутреннее сопротивление прибора будет значительно меньше периода собственных колебаний стрелки прибора. В этом случае конденсатор полностью разряжается за время, много меньшее периода собственных колебаний, и изменение сопротивления резистора, включенного последовательно с гальванометром, никак не влияет на отброс стрелки гальванометра.


Задание 1. Определение баллистической постоянной гальванометра.

1. Соберите цепь по схеме (рис. 5).

2. Подсоедините эталонный конденсатор С эт, емкость которого указана на установке.

3. Включите осветитель гальванометра в сеть.

4. Определите начальное положение n 0 риски на шкале. Отсчет величины отклонения светового "зайчика" производите относительно этого деления.

5. Установите по вольтметру PU напряжение по указанию преподавателя.

6. Подключите конденсатор к источнику питания (ручку переключателя S на стенде установите в левое положение) и через 2 - 3 секунды разрядите его на гальванометр (ручку переключателя S установите в правое положение) одновременно отмечая максимальное деление шкалы n, до которого отклонится световой “зайчик”.

7. Повторите аналогичные измерения по пятому пункту не менее трех раз для различных значений напряжений U , заданных преподавателем.

8. По полученным данным, пользуясь формулой (8), определите К б.

9. Результаты измерений и расчетов занесите в таблицу 1.

где ΔU = 0,1 В; Δn = 5 мм; Δ С эт – указана на установке.

11.Ответ представьте в виде: К б = <К б > ± Δ К б.

Задание 2 . Определение емкости конденсаторов

1. Включите в собранную схему конденсатор измеряемой емкости C x в Включите в собранную схему конденсатор измеряемой ёмкости С х вместо С эт.

2. Включите осветитель гальванометра.

3. Установите по вольтметру PU напряжение U, заданное преподавателем.

4. Подключите конденсатор к источнику тока и через 2-3 секунды разрядите его через гальванометр, одновременно отмечая максимальное деление (n ) шкалы, до которого отклонится световой “зайчик “.

5. Повторите аналогичные измерения не менее 3-х раз для различных значений напряжения U (по указанию преподавателя).

6. По полученным данным, пользуясь формулой (9), определите C x (<K б > взять из таблицы 1).

7. Тем же методом определите емкость других конденсаторов (C y или C z по указанию преподавателя).

8. Результаты измерений и расчетов занесите в таблицу 2.

Задание 3. Определить емкости батарей из двух конденсаторов.

1. Соедините конденсаторы C x и C y (или C x и C z) последовательно в батарею (рис.1).

2. Методом, приведенным в задании 2, определите емкости C xy (или C xz) батареи при последовательном соединении.

3. Соедините те же конденсаторы параллельно в батарею.

4. Определите емкость C xy (или C xz) батареи при параллельном соединении.

5. Результаты измерений и расчетов занесите в таблицу 2.

8. Результаты расчетов представьте в виде:

C x = <C x > ± Δ C x и т. д.

9. Сравните результаты опытов при последовательном и параллельном соединении конденсаторов с результатами вычисления емкости батарей по теоретическим формулам (3) и (4).

10. Оформите вывод по анализу опытных и расчетных данных, занесенных в таблицы. В выводе отразить следующие положения:

а) зависит ли баллистическая постоянная K б от напряжения на эталонном конденсаторе и его емкости C эт?

б) как увеличение напряжения на конденсаторе влияет на отброс светового луча по шкале и почему?

в) зависят ли емкости C x , C y , C xy (послед.), C xy (паралл.) от напряжений на них?

г) как согласуются значения экспериментально полученных емкостей батарей конденсаторов при последовательном и параллельном соединениях с результатами вычисления по формулам?

Контрольные вопросы

1. Каков принцип действия баллистического гальванометра?

2. Каков физический смысл баллистической постоянной?

3. Что называется емкостью уединенного проводника? Конденсатора?

4. Что называется взаимной емкостью двух проводников?

5. Чем отличается емкость конденсатора от емкости уединенного проводника?

6. Выведите формулу емкости батареи конденсаторов при последовательном и параллельном соединениях.

7. В каких случаях следует применять тот или иной способ соединения конденсаторов в батарею?

8. Объясните метод определения емкости с помощью баллистического гальванометра.

Лабораторная работа N 17