Элементарные преобразования матриц и их свойства. Элементарные матрицы Какие преобразования строк матрицы называют элементарными

Элементарные преобразования матрицы - это такие преобразования матрицы , в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений , которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Определение

Элементарными преобразованиями строк называют:

В некоторых курсах линейной алгебры перестановка строк матрицы не выделяется в отдельное элементарное преобразование в силу того, что перестановку местами любых двух строк матрицы можно получить, используя умножение любой строки матрицы на константу , и прибавление к любой строке матрицы другой строки, умноженной на константу , .

Аналогично определяются элементарные преобразования столбцов .

Элементарные преобразования обратимы .

Обозначение указывает на то, что матрица может быть получена из путём элементарных преобразований (или наоборот).

Свойства

Инвариантность ранга при элементарных преобразованиях

Эквивалентность СЛАУ при элементарных преобразованиях

Назовём элементарными преобразованиями над системой линейных алгебраических уравнений :
  • перестановку уравнений;
  • умножение уравнения на ненулевую константу;
  • сложение одного уравнения с другим, умноженным на некоторую константу.
Т.е. элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение: Напомним, что две системы называются эквивалентными, если множества их решений совпадают.

Нахождение обратных матриц

Теорема (о нахождении обратной матрицы).
Пусть определитель матрицы не равен нулю, пусть матрица определяется выражением . Тогда при элементарном преобразовании строк матрицы к единичной матрице в составе одновременно происходит преобразование к .

Приведение матриц к ступенчатому виду

Введём понятие ступенчатых матриц: Матрица имеет ступенчатый вид , если: Тогда справедливо следующее утверждение:

Связанные определения

Элементарная матрица. Матрица А является элементарной, если умножение на нее произвольной матрицы В приводит к элементарным преобразованиям строк в матрице В.

Литература

Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов . - 6-е изд., стер. - М .: ФИЗМАТЛИТ, 2004. - 280 с.


Wikimedia Foundation . 2010 .

Смотреть что такое "Элементарные преобразования матрицы" в других словарях:

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые ч цы, из к рых, по предположению, состоит вся материя. В совр. физике термин «Э. ч.» обычно употребляется не в своём точном значении, а менее строго для наименования… … Физическая энциклопедия

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии «Э. ч.» в современной физике находит выражение идея о первообразных сущностях,… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Матрица. Матрица математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

Элементарные преобразования матрицы находят широкое применение в различных математических задачах. Например, они составляют основу известного метода Гаусса (метода исключения неизвестных) для решения системы линейных уравнений .

К элементарным преобразованиям относятся:

1) перестановка двух строк (столбцов);

2) умножение всех элементов строки (столбца) матрицы на некоторое число, не равное нулю;

3) сложение двух строк (столбцов) матрицы, умноженных на одно и то же число, отличное от нуля.

Две матрицы называются эквивалентными , если одна из них может быть получена из другой после конечного числа элементарных преобразований. В общем случае эквивалентные матрицы равными не являются, но имеют один и тот же ранг.

Вычисление определителей с помощью элементарных преобразований

С помощью элементарных преобразований легко вычислить определитель матрицы. Например, требуется вычислить определитель матрицы:

Тогда можно вынести множитель :

теперь, вычитая из элементов j -го столбца соответствующие элементы первого столбца, умноженные на , получим определитель:

который равен: где

Затем повторяем те же действия для и, если все элементы то тогда окончательно получим:

Если для какого-нибудь промежуточного определителя окажется, что его левый верхний элемент , то необходимо переставить строки или столбцы в так, чтобы новый левый верхний элемент был не равен нулю. Если Δ ≠ 0, то это всегда можно сделать. При этом следует учитывать, что знак определителя меняется в зависимости от того, какой элемент является главным (то есть, когда матрица преобразована так, что ). Тогда знак соответствующего определителя равен .

П р и м е р. С помощью элементарных преобразований привести матрицу

к треугольному виду.

Р е ш е н и е. Сначала умножим первую строку матрицы на 4, а вторую на (–1) и прибавим первую строку ко второй:

Теперь умножим первую строку на 6, а третью на (–1) и прибавим первую строку к третьей:

Наконец, умножим 2-ю строку на 2, а 3-ю на (–9) и прибавим вторую строку к третьей:

В результате получена верхняя треугольная матрица

Пример. Решить систему линейных уравнений, используя матричный аппарат:

Р е ш е н и е. Запишем данную систему линейных уравнений в матричной форме:

Решение данной системы линейных уравнений в матричной форме имеет вид:

где – матрица, обратная к матрице А .

Определитель матрицы коэффициентов А равен:

следовательно, матрица А имеет обратную матрицу .

2. Мальцев А.И. Основы линейной алгебры. – М.: Наука, 1975. – 400 с.

3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. – М.: Наука, 1986. – 544 с.

Элементарными преобразованиями называют следующие действия над строками и столбцами матрицы A:

1) перестановку местами двух строк или столбцов матрицы;

2) умножение строки или столбца матрицы на число, отличное от нуля;

3) прибавление к одной строке (столбцу) другой строки (столбца).

Теорема. Элементарные преобразования не меняют ранг матрицы, то есть, если матрица B получена из матрицы A элементарными преобразованиями, то.

Доказательство. 1). При перестановке местами двух столбцов матрицы максимальное число линейно независимых столбцов не меняется, а значит, не меняется и её ранг.

2). Пусть матрица Bполучена из матрицыAумножениемi- ой строки на числоt0 иr(A) =k. Очевидно, любой минор матрицыB, не содержащийi- тую строку, равен соответствующему минору матрицыA, а любой минор матрицыB, содержащийi-тую строку, равен соответствующему минору матрицыAумноженному на числоt. Следовательно, минор порядкаkматрицыB, соответствующий базисному минору матрицыA, будет отличен от нуля, а все миноры порядкаk+1 матрицыB, как и все миноры порядкаk+1 матрицыA, будут равны нулю. А это значит, чтоr(B)=k=r(A).

3). Пусть матрица Bполучена из матрицыAприбавлениемi- ой строки кj-той строке иr(A) =k. Миноры порядкаk+1 матрицыB, не содержащиеj-тую строку, будут равны соответствующим минорам матрицыA, и поэтому равны нулю. Миноры порядкаk+1 матрицыB, содержащиеi- тую иj-тую строки, будут равны сумме двух нулевых определителей. Один из этих определителей содержит две одинаковых строки (вj-той строке расположены элементыi–той строки), а второй определитель является минором порядкаk+1 матрицыAи поэтому равен нулю. Миноры порядкаk+1 матрицыB, содержащиеj-тую строку, но не содержащиеi-тую строку, будут равны сумме двух миноров порядкаk+1 матрицыAи поэтому тоже будут равны нулю. Следовательно, все миноры порядкаk+1 матрицыBравны 0 иr(B)k=r(A).

Пусть матрица Cполучена из матрицыBумножениемi–той строки на (-1). Тогда матрицаAполучается из матрицыCприбавлениемi–той строки кj-той строке и умножениемi–той строки на (-1). Следовательно, как было доказано выше, будетr(A)r(C) =r(B). Таким образом, одновременно справедливы неравенстваr(B)r(A) иr(A)r(B) откуда следует, чтоr(A) =r(B).

Это свойство элементарных преобразований используют на практике для вычисления ранга матрицы. Для этого, при помощи элементарных преобразований, приводят данную (ненулевую) матрицу A к трапецевидной форме, то есть к виду

B = ,

где элементы для всех i = 1,2,...,k; элементыдля всех i > j и

i > k. Очевидно, что r(B) = k, то есть ранг матрицы Bравен числу ненулевых строк. Это следует из того, что минор порядка k матрицыB, расположенный на пересечении первых k строк и столбцов, является определителем диагонального вида и равен; а любой минор порядка k+1 матрицы В содержит нулевую строку, а значит, равен 0 (либо, если k = n, таких миноров нет вообще).

Теорема. Любую ненулевую матрицуAразмерностиmnможно привести к трапецевидной форме при помощи элементарных преобразований.

Доказательство. Так какA0, то существует элемент матрицы
. Переставив местами первую иi-тую строки, первый иj-тый столбцы, переместим элементв левый верхний угол матрицы и обозначим
. Затем кi-той строке полученной матрицы (i= 2,3, …,m) прибавим первую строку, умноженную на число. В результате этих элементарных преобразований получим матрицу

A
.

Если все элементы
матрицыAравны нулю, то теорема доказана. Если же существует элемент
, то, перестановкой второй иi-той строк, второго иj-того столбцов матрицыA, переместим элементна место элементаи обозначим
(если
, тогда сразу обозначим
). Затем кi-той строке полученной матрицы (i= 3, …,m) прибавим вторую строку, умноженную на число. В результате получим матрицу


.

Продолжив этот процесс, за конечное число шагов получим матрицу B, то есть приведем матрицуAк трапецевидной форме.

Пример. Вычислим ранг матрицы

. Стрелками обозначены следующие элементарные преобразования: 1) переставили местами первую и вторую строки; 2) прибавили к четвертой строке третью; 3) прибавили к третьей строке первую, умноженную на -2, и четвертую строку поделили на 3; 4) поделили третью строку на 5 и переставили местами третью и четвертую строки; 5) к третьей строке, умноженной на -3, прибавили вторую строку и к четвертой строке прибавили третью. Видно, что матрица, полученная из матрицы А указанными элементарными преобразованиями, имеет трапецевидную форму с тремя ненулевыми строками. Следовательно, r(A) = 3.

Определение 5.8. Элементарными преобразованиями строк матрицы называют следующие преобразования:

1) умножение строки матрицы на ненулевое действительное число;

2) прибавление к одной строке матрицы другой её строки, умноженной на произвольное действительное число.

Лемма 5.1. С помощью элементарных преобразований строк матрицы можно поменять местами любые две строки.

Доказательство.

А= .

.

Ступенчатая матрица. Ранг матрицы

Определение 5.9. Ступенчатой будем называть матрицу, которая обладает следующими свойствами:

1) если i -я строка нулевая, то (i + 1)-я строка также нулевая,

2) если первые ненулевые элементы i -й и (i + 1)-й строк расположены в столбцах с номерами k и R , соответственно, то k < R .

Условие 2) требует обязательного увеличения нулей слева при переходе от i -й строки к (i + 1)-й строке. Например, матрицы

А 1 = , А 2 = , А 3 =

являются ступенчатыми, а матрицы

В 1 = , В 2 = , В 3 =

ступенчатыми не являются.

Теорема 5.1. Любую матрицу можно привести к ступенчатой с помощью элементарных преобразований строк.

Проиллюстрируем эту теорему на примере.

А =

.

Получившаяся матрица – ступенчатая.

Определение 5.10. Рангом матрицы будем называть число ненулевых строк в ступенчатом виде этой матрицы.

Например, ранг матрицы А в предыдущем примере равен 3.

Вопросы для самоконтроля

1. Что называется матрицей?

2. Как производится сложение и вычитание матриц; умножение матрицы на число?

3. Дайте определение умножению матриц.

4. Какая матрица называется транспонированной?

5. Какие преобразования строк матрицы называются элементарными?

6. Дайте определение ступенчатой матрицы.

7. Что называют рангом матрицы?

Определители

Вычисление определителей

Определители второго порядка

Рассмотрим квадратную матрицу второго порядка

Определение 6.1. Определителем второго порядка, соответствующим матрице A,называется число, вычисляемое по формуле

А │= = .

Элементы a ij называются элементами определителя A │, элементы а 11 , а 22 образуют главную диагональ , а элементы а 12 , а 21 – побочную.

Пример. = –28 + 6 = –22.

Определители третьего порядка

Рассмотрим квадратную матрицу третьего порядка

А = .

Определение 6.2. Определителем третьего порядка, соответствующим матрице А , называется число, вычисляемое по формуле

А │= = .

Чтобы запомнить, какие произведения в правой части равенства следует брать со знаком «плюс», а какие ─ со знаком «минус», полезно запомнить правило, называемое правилом треугольника:

Пример.

1) = –4 + 0 + 4 – 0 + 2 + 6 = 8.

2) = 1, т. е. │Е 3 │= 1.

Рассмотрим ещё один способ вычисления определителя третьего порядка.

Определение 6.3. Минором M ij элемента a ij определителя называется определитель, полученный из данного вычёркиванием i -й строки и j -го столбца. Алгебраическим дополнением A ij элемента a ij определителя называется его минор M ij , взятый со знаком (–1) i + j .

Пример. Вычислим минор М 23 и алгебраическое дополнение А 23 элемента а 23 в матрице

Вычислим минор М 23:

М 23 = = = –6 + 4 = –2.

Тогда А 23 = (–1) 2+3 М 23 = 2.

Теорема 6.1. Определитель третьего порядка равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения.

Доказательство. По определению

= . (6.1)

Выберем, например, вторую строку и найдём алгебраически дополнения А 21 , А 22 , А 23:

А 21 = (–1) 2+1 = –() = ,

А 22 = (–1) 2+2 = ,

А 23 = (–1) 2+3 = –() = .

Преобразуем теперь формулу (6.1)

А │= () + () + () =

= А 21 + А 22 + А 23.

Формула А │= А 21 + А 22 + А 23 . называется разложением определителя А │ по элементам второй строки. Аналогично разложение можно получить по элементам других строк и любого столбца

Пример.

= (по элементам второго столбца) = 1× (–1) 1+2 + 2 × (–1) 2+2 +

+ (–1)(–1) 3+2 = –(0 + 15) + 2(–2 +20) + (–6 +0) = –15 +36 – 6 = 15.

6.1.3 Определители n-го порядка (n N )

Определение 6.4. Определителем n -го порядка, соответствующим матрице n -го порядка

А =

называется число, равное сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения, т. е.

A │= А i1 + A i2 + … + A in = А 1j + A 2j + … + A nj .

Нетрудно заметить, что при n = 2 получается формула для вычисления определителя второго порядка. Если n = 1, то по определению будем считать |A | = |a | = a .

Пример. = (по элементам 4-й строки) = 3×(–1) 4+2 +

2×(–1) 4+4 = 3(–6 + 20 –2 –32) +2(– 6 +16 +60 +2) = 3(–20) +2×72 = –60 +144 = 84.

Заметим, что если в определителе все элементы какой-либо строки (столбца), кроме одного, равны нулю, то при вычислении определителя его удобно разложить по элементам этой строки (столбца).

Пример.

Е n │= = 1 × │E n - 1 │ = … = │E 3 │= 1.

Свойство определителей

Определение 6.5. Матрицу вида

или

будем называть треугольной матрицей.

Свойство 6.1. Определитель треугольной матрицы равен произведению элементов главной диагонали, т. е.

= = .

Свойство 6.2. Определитель матрицы с нулевой строкой или нулевым столбцом равен нулю.

Свойство 6.3. При транспонировании матрицы определитель не изменяется, т. е.

А │= │А t │.

Свойство 6.4. Если матрица В получается из матрицы А умножением каждого элемента некоторой строки на число k , то

В │= k А │.

Свойство 6.5.

= + .

Свойство 6.6. Если матрица В получается из матрицы А перестановкой двух строк, то│В │= −│А │.

Свойство 6.7. Определитель матрицы с пропорциональными строками равен нулю, в частности, нулю равен определитель матрицы с двумя одинаковыми строками.

Свойство 6.8. Определитель матрицы не изменяется, если к элементам одной строки прибавить элементы другой строки матрицы, умноженные на некоторое число.

Замечание. 6.1. Так, как по свойству 6.3 определитель матрицы не меняется при транспонировании, то все свойства о строках матрицы верны и для столбцов.

Свойство 6.9. Если А и В – квадратные матрицы порядка n , то │АВ │=│А ││В │.

Обратная матрица

Определение 6.6. Квадратная матрица А порядка n называется обратимой, если существует матрица В такая, что АВ = ВА = Е n . В этом случае матрица В называется обратной к матрице А и обозначается А –1 .

Теорема 6.2. Справедливы следующие утверждения:

1) если матрица А обратима, то существует точно одна ей обратная матрица;

2) обратимая матрица имеет определитель, отличный от нуля;

3) если А и В – обратимые матрицы порядка n , то матрица АВ обратима, причём (АВ ) –1 = В –1 ×А –1 .

Доказательство.

1. Пусть В и С – матрицы, обратные к матрице А , т. е. АВ = ВА = Е n и АС = СА = Е n . Тогда В = ВЕ n = В (АС ) = (ВА )С = Е n С = С .

2. Пусть матрица А обратима. Тогда существует матрица А –1 , ей обратная, причём

АА –1 = Е n .

По свойству 6.9 определителя │АА –1 │=│А ││А –1 │. Тогда │А ││А –1 │=│Е n │, откуда │А ││А –1 │= 1. Следовательно, │А │¹ 0.

3. Действительно,

(АВ )(В –1 А –1) = (А (ВВ –1))А –1 = (АЕ n )А –1 = АА –1 = Е n .

(В –1 А –1)(АВ ) = (В –1 (А –1 А 21 = –1, А 22 = 2. Тогда А –1 = .

Вопросы для самоконтроля

1. Что называется определителем?

2. Каковы его основные свойства?

3. Что называется минором и алгебраическим дополнением?

4. Каковы способы вычисления определителей (второго, третьего и n -го порядков)?

5. Какая матрица называется квадратной?


Похожая информация.


Следующие три операции называют элементарными преобразованиями строк матрицы :

1) Умножение i-й строки матрицы на число λ ≠ 0:

которое будем записывать в виде (i) → λ(i).

2) Перестановка двух строк в матрице, например i-й и k-й строк:


которую будем записывать в виде (i) ↔ (k).

3) Добавление к i-й строке матрицы ее k-й строки с коэффициентом λ:


что будем записывать в виде (i) → (i) + λ(k).

Аналогичные операции над столбцами матрицы называют элементарными преобразованиями столбцов .

Каждое элементарное преобразование строк или столбцов матрицы имеет обратное элементарное преобразование , которое преобразованную матрицу превращает в исходную. Например, обратным преобразованием для перестановки двух строк является перестановка тех же строк.

Каждое элементарное преобразование строк (столбцов) матрицы А можно трактовать как умножение A слева (справа) на матрицу специального вида. Эта матрица получается, если то же преобразование выполнить над единичной матрицей . Рассмотрим подробнее элементарные преобразования строк.

Пусть матрица B получается в результате умножения i-й строки матрицы A типа m×n на число λ ≠ 0. Тогда B = Е i (λ)А, где матрица Е i (λ) получается из единичной матрицы E порядка m умножением ее i-й строки на число λ.

Пусть матрица B получается в результате перестановки i-й и k-й строк матрицы А типа m×n. Тогда B = F ik А, где матрица F ik получается из единичной матрицы E порядка m перестановкой ее i-й и k-й строк.

Пусть матрица B получается в результате добавления к i-й строке матрицы А типа m×n ее k-й строки с коэффициентом λ. Тогда B = G ik (λ)А, где матрица G ik получается из единичной матрицы E порядка m в результате добавления к i-й строке k-й строки с коэффициентом λ, т.е. на пересечении i-й строки и k-го столбца матрицы E нулевой элемент заменен на число λ.

Точно так же реализуются элементарные преобразования столбцов матрицы A, но при этом она умножается на матрицы специального вида не слева, а справа.

С помощью алгоритмов, которые основаны на элементарных преобразованиях строк и столбцов, матрицы можно преобразовывать к различному виду. Один из важнейших таких алгоритмов составляет основу доказательства следующей теоремы.

Теорема 10.1. С помощью элементарных преобразований строк любую матрицу можно привести к ступенчатому виду .

◄ Доказательство теоремы состоит в построении конкретного алгоритма приведения матрицы к ступенчатому виду. Этот алгоритм состоит в многократном повторении в определенном порядке трех операций, связанных с некоторым текущим элементом матрицы, который выбирается исходя из расположения в матрице. На первом шаге алгоритма в качестве текущего элемента матрицы выбираем верхний левый, т.е. [A] 11 .

1*. Если текущий элемент равен нулю, переходим к операции 2*. Если же он не равен нулю, то строку, в которой расположен текущий элемент (текущую строку), добавляем с соответствующими коэффициентами к строкам, расположенным ниже, так, чтобы все элементы матрицы, стоящие в столбце под текущим элементом, обратились в нуль. Например, если текущий элемент есть [A] ij , то в качестве коэффициента для k-й строки, k = i + 1, ... , нам следует взять число - [A] kj /[A] ij . Выбираем новый текущий элемент, смещаясь в матрице на один столбец вправо и на одну строку вниз, и переходим к следующему шагу, повторяя операцию 1*. Если такое смещение невозможно, т.е. достигнут последний столбец или строка, преобразования прекращаем.

2*. Если текущий элемент в некоторой строке матрицы равен нулю, то просматриваем элементы матрицы, расположенные в столбце под текущим элементом. Если среди них нет ненулевых, переходим к операции 3*. Пусть в k-й строке под текущим элементом находится ненулевой элемент. Меняем местами текущую и k-ю строки и возвращаемся к операции 1*.

3*. Если текущий элемент и все элементы под ним (в том же столбце) равны нулю, меняем текущий элемент, смещаясь в матрице на один столбец вправо. Если такое смещение возможно, т. е. текущий элемент находится не в самом правом столбце матрицы, то повторяем операцию 1* . Если же мы уже достигли правого края матрицы и смена текущего элемента невозможна, то матрица имеет ступенчатый вид, и мы можем прекратить преобразования.

Так как матрица имеет конечные размеры , а за один шаг алгоритма положение текущего элемента смещается вправо хотя бы на один столбец, процесс преобразований закончится, причем не более чем за n шагов (n - количество столбцов в матрице). Значит, наступит момент, когда матрица будет иметь ступенчатый вид.

Пример 10.10. Преобразуем матрицу к ступенчатому виду с помощью элементарных преобразований строк.

Используя алгоритм из доказательства теоремы 10.1 и записывая матрицы после окончания выполнения его операций, получаем