Оптоэлектроника приборы. Общая характеристика оптоэлектронных приборов. Преимуществами фототиристоров являются

Оптоэлектроника использует оптические и электронные явления в веществах и их взаимные связи для передачи, обработки и хранения информации. Элементной базой оптоэлектроники являются оптоэлектронные приборы - оптроны.

Оптроном называется устройство, состоящее из связанных между собой оптически (посредством светового луча) светоизлучателя и фотоприемника и служащее для управления и для передачи информации.

Оптрон представляет собой единую конструкцию, состоящую из источника и приемника излучения, связанных между собой оптическим каналом. Структурная схема оптрона приведена на рис. 8.8.

Рис.8.8. Структурная схема оптрона

Входной сигнал, например электрический ток I вх, преобразуется в светоизлучателе СИ в световой поток Ф , энергия которого пропор­циональна входному сигналу. По оптическому каналу ОК световой поток направляется в фотоприемник ФП, где преобразуется в пропорциональное световому потоку значение выходного электрического тока I вых. С помощью устройства управления оптическим каналом УОК можно управлять световым потоком путем изменения физических свойств самого оптического канала.

Таким образом, в оптронах осуществляется двойное преобразование энергии: электрической в световую и световой снова в электрическую. Это придает оптронам ряд совершенно новых свойств и позволяет на их основе создавать электронные устройства с исключительно своеобразными параметрами и характеристиками. Так, применение оптронов позволяет осуществить почти идеальную электрическую развязку между элементами устройства (сопротивление до 10 16 Ом, проходная емкость до 10 -4 пФ). Кроме того, могут быть эффективно использованы такие свойства оптронов, как однонаправленность информации, отсутствие обратной связи с выхода на вход, высокая помехозащищенность, широкая полоса пропускание (от нуля до сотен и даже тысяч мегагерц), совместимость с другими (полупроводниковыми) приборами. Это дает возможность использовать оптроны для модулирования сигналов, измерений в высоковольтных цепях, согласования низкочастотных цепей с высокочастотными и низкоомных с высокоомными.

К недостаткам оптронов следует отнести зависимость их параметров от температуры, низкие КПД и коэффициент передачи.

Рисунок 8.9. Устройство оптрона: 1 - выводы: 2 - фотоприемник: 3 - корпус; 4 - оптическая среда; 5 - светодиод



Устройство оптрона показано на рис.8.9 В качестве излучателей в оптронах используют обычно светодиоды на основе арсенида-фосфида галлия GaAsP или алюминий-арсенида галлия GaAlAs, характеризующиеся большой яркостью, высоким быстродействием и длительным сроком службы. Кроме того, они хорошо согласуются по спектральным характеристикам с фотоприемниками на основе кремния. В качестве фотоприемников могут использоваться фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Фотодиоды и фототранзисторы как приемники излучения получили в оптронах наибольшее распространение, поскольку по своим характе­ристикам и параметрам они могут работать совместно с интегральными микросхемами. Фототиристоры широко применяются в оптронах в качестве ключевых усилителей мощности, управляемых световым излучением. Передача светового излучения в оптронах осуществляется через оптический канал, роль которого могут играть различные среды. Назначение оптического канала - передача максимальной световой энергии от излучателя к приемнику. Передающей средой могут быть воздух, различные иммерсионные среды, а также оптические световоды длиной 1 м и более. Световолоконные оптические линии связи позволяют довести пробивное напряжение изоляции между входом и выходом оптрона до 150 кВ, что дает возможность применять оптроны для измерений в высоковольтных цепях.



Входными параметрами оптронов являются: номинальный вход­ной ток светодиода в прямом направлении I вх.ном и падение напря­жения на нем в прямом направлении U вх при номинальном значении входного тока; входная емкость С вх в заданном режиме; максимально допустимый входной ток I вх.макс; максимально допустимое обратное напряжение на входе U вх.обр.макс.

Выходными параметрами оптронов являются: максимально допус­тимое обратное напряжение U вх.обр.макс, прикладываемое к выходу; максимально допустимый выходной ток I вых.макс; выходная емкость С вых; световое R св и темновое R т выходные сопротивления (для фоторезисторных оптронов).

Из передаточных параметров исходными являются коэффициент передачи тока К I =(I вых / I вх)100, либо дифференциальный коэффици­ент передачи тока К I д = (dI вых / dI вх)100, выраженные в процентах.

Быстродействие оптрона оценивают при подаче на его вход прямоуголь­ного импульса по времени задержки t з д от момента подачи импульса до момента достижения выходным током значения 0,1 I вых.обр.макс, а также по времени нарастания t нар выходного тока от 0,1 до 0,9 его максимального значения. Суммарное время задержки и нарастания называют временем включения t вкл. Быстродействие фотоприемника характеризуется его частотными свойствами, т.е. такой частотой синусоидально модулированно­го светового потока, при которой чувствительность фотоприемника вследствие инерционности уменьшается в раз.

Приведем краткое описание некоторых типов наиболее распространенных промышленных оптронов.

Фотодиодный оптрон. Условное графическое обозначение его приведено на рис. 8.10,а . В качестве излучателя используется светодиод на основе арсенида галлия.

В качестве фотоприемников в диодных оптронах используются кремниевые фотодиоды, которые хорошо согласуются по спектральным характеристикам и быстродействию с арсенид-галлиевыми светодиодами.

Коэффициент передачи тока диодного оптрона мал (K I = 1,0 1,5%), однако диодные оптроны являются самыми быстродействующими.

Как элемент электрической цепи фотоприемник диодного оптрона может работать в двух режимах: фотопреобразователя с внешним источни­ком питания и фотогенератора без внешнего источника питания.

Если учесть зависимость светового потока светодиода оптрона от тока I вх через светодиод, то можно найти зависимость тока I н нагрузочного резистора R н или напряжения U н на нем от входного тока оптрона, т.е. I н = f(I вх ) или U н = φ (I вх ) .

Надо учитывать, что для передачи максимальной энергии требуется согласование нагрузочного резистора с выходным сопротивлением оптрона.

Фототранзисторный оптрон (рис. 8.10, б ).По сравнению с фотодиодным оптроном в качестве фотоприемника в нем используется кремниевый фототранзистор. Являясь усилителем базового тока, фототранзистор имеет существенно более высокую чувствительность, чем фотодиод, поэтому коэффициент передачи тока фототранзисторного оптрона K I = 50 100 %, а оптрона с составным фототранзистором – до 800% и более.

Рисунок 8.10. Условные графические обозначения оптронов: фотодиодного (а), фототранзисторного (б), фоторезисторного (в), фототиристорного (г)

Недостатком фототранзисторов является то, что они по сравнению с фотодиодами гораздо более инерционны и имеют быстродействие 10 -4 – 10 -5 с.

Фоторезисторный оптрон (рис.8.10,в ).В качестве фотоприемника в оптронах иногда используют фоторезисторы на основе селенида или сульфида кадмия (CdSe,CdS), а в качестве излучателя - спектрально согласующиеся с ними светодиоды на основе фосфида или арсенида-фосфида галлия (GaP, GaAsP). Быстродействие фоторезисторных оптронов целиком определяется быстродействием фотоприемника, которое составляет 100-200 мкс.

Фототиристорный оптрон (рис. 8.10,г ) включает в себя фототиристор в качестве фотоприемника. Быстродействие фототиристорного оптрона определяется временем выключения фототиристора, в течение которого прибор переходит из открытого состояния в закрытое, оно составляет десятки микросекунд.

В зависимости от типа фотоприемника оптроны могут применяться в электронных устройствах для переключения, преобразования, согласования, модуляции и т.д. Они могут использоваться также в качестве малогабаритных импульсных трансформаторов, реле для коммутации напряжений и токов, в автогенераторах, цепях обратной связи и т.д.

Оптроны с открытым оптическим каналом служат в качестве раз­личных датчиков (перемещения, «края объекта» и др.). В устройствах передачи информации часто применяют оптоэлектронные интегральные микросхемы, в которых в одном корпусе объединены оптроны и интегральная микросхема. Фотоприемник такой микросхемы может быть изготовлен в том же кристалле кремния, что и транзисторная микросхема, как одно целое.

Оптоэлектронные устройства с управляемым световодом можно использовать в качестве логических ячеек преобразователей частоты, в устройствах переключения индикаторов, индикаторах вида жидкости, устройствах измерения малых перемещений, сенсорных устройствах очувствления роботов и т.д. Эти устройства обладают высоким быстродействием, помехозащищенностью, возможностью применения в агрессивных и взрывоопасных средах.

В последнее время при изготовлении оптоэлектронных устройств источник и приемник излучения оказывается возможным удалять из зоны измерения (от объекта контроля) на десятки метров с помощью элементов волоконной оптики - волоконных световодов (жгутов из нитей стекловолокна).

Оптоэлектронные устройства широко применяют в вычислительной технике, автоматике, контрольно-измерительных устройствах. В дальнейшем применение этих устройств будет расширяться по мере улучшения их характеристик: надежности, долговечности и температурной стабильности.

Оптронными приборами (оптронами) называют такие полупроводниковые приборы, в которых имеются источник и приемник излучения (светоизлучатель и фотоприемник) с тем или иным видом оптической связи между ними.

Принцип действия оптронов любого вида основан на следующем. В излучателе энергия электрического сигнала преобразуется в световую, а в фотоприемнике, наоборот, световой сигнал вызывает электрический отклик (сигнал). Практически распространение получили лишь оптроны, у которых имеется прямая оптическая связь от излучателя к фотоприемнику и, как правило, исключены все виды электрической связи между этими элементами.Наличие оптической связи обеспечивает электрическую изоляцию между входом (излучателем) и выходом (фотоприемником).

Таким образом, в электронной цепи такой прибор выполняет функцию элемента связи, в котором в то же время осуществлена электрическая (гальваническая) развязка входа и выхода.

Применение оптоэлектронных приборов достаточно разнообразно: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов; для защиты входных цепей измерительных устройств от помех и наводок, оптическое, бесконтактное управление сильноточными и высоковольтными цепями (твердотельные реле), запуск мощных тиристоров, симисторов, управление электромеханическими релейными устройствами.

Создание "длинных" оптронов (приборов с протяженным гибким волоконно-оптическим световодом в качестве оптического канала) открыло совершенно новое направление применения изделий оптронной техники - связь на расстояниях по волоконной оптике.

Оптоэлектронные приборы находят применение и в чисто радиотехнических схемах модуляции, автоматической регулировки усиления и др. Воздействие по оптическому каналу используется здесь для вывода схемы в оптимальный рабочий режим, для бесконтактной перестройки режима и т. п.

Условно-графические обозначения основных типов оптронов приведены на рис.15.1.

15.1 Классификация оптоэлектронных приборов

Оптоэлектронные приборы классифицируются по следующим признакам.

По типу используемого излучателя оптроны подразделяются на:

    с излучателем на миниатюрных лампочках накаливания. Оптроны на таких излучателях инерционны, и в настоящее время практически не используются, хотя находят применение в резисторных оптронах

    с излучателем на неоновых лампочках, в которых используется свечение электрического разряда газовой смеси неон-аргон. Этим видам излучателей свойственны невысокая светоотдача, низкая устойчивость к механическим воздействиям, ограниченная долговечность, большие габариты, полная несовместимость с интегральной технологией. Тем не менее, в отдельных видах оптронов они могут находить применение.

    с излучателем на электролюминесцентных ячейках.Электролюминесцентные ячейки имеют невысокую эффективность преобразования электрической энергии в световую, низкую долговечность (особенно - тонкопленочные), сложны в управлении (например, оптимальный режим для порошковых люминофоров ~220 В при f =400 ... 800Гц). Основное достоинство этих излучателей - конструктивно-технологическая совместимость с фоторезисторами, возможность создания на этой основе многофункциональных, многоэлементных оптронных структур. В настоящее время находят ограниченное применение.

    с излучателем на светодиодах и лазерных диодах. Основным наиболее универсальным видом излучателя, используемым в оптронах, является полупроводниковый инжекционный светоизлучающий диод - светодиод. Это обусловлено следующими его достоинствами: высокое значение КПД преобразования электрической энергии в оптическую; узкий спектр излучения (квазимонохроматичность); широта спектрального диапазона, перекрываемого различными светодиодами; направленность излучения; высокое быстродействие; малые значения питающих напряжений и токов; совместимость с транзисторами и интегральными схемами; простота модуляции мощности излучения путем изменения прямого тока; возможность работы, как в импульсном, так и в непрерывном режиме; линейность ватт-амперной характеристики в более или менее широком диапазоне входных токов; высокая надежность и долговечность; малые габариты; технологическая совместимость с изделиями микроэлектроники.

По типу используемого фотоприемника оптроны подразделяются на:

    Оптроны на основе фоторезисторов,свойства которых при освещении меняются по заданному сложному закону, что позволяет моделировать математические функции, и является шагом на пути создания функциональной оптоэлектроники. Однако, фоторезисторные оптроны инерционны.

    Оптроны на основе фотодиодов;

    Оптроны на основе фототранзисторов;

    Оптроны на основе фототиристоров.

Последниетри являются наиболее универсальными фотоприемниками, работающими с открытым р - n-переходом. В подавляющем большинстве случаев они изготовляются на основе кремния, и область их максимальной спектральной чувствительности находится вблизи λ=0,7...0,9 мкм.

По типу используемого оптического канала оптроны подразделяются на:

    Оптроны с открытым оптическим каналом. В таких оптронах излучатель и фотоприемник разделены воздушным зазором. Они широко применяются для определения числа оборотов крутящихся валов, синхронизации передвижения механических систем, как датчики положения и т.п. Оптроны с открытым каналом в свою очередь подразделяются на оптроны, работающие на отражение и пропускание.

    Оптроны с закрытым оптическим каналом. В них оптический канал защищен от любых внешних воздействий. Такие оптроны применяются для гальванической развязки входных и выходных электрических цепей. Если в качестве выходной цепи используются мощные силовые приборы (тиристоры, симисторы, полевые MOSFET-транзисторы), то такие оптроны называют твердотельными реле. Такие реле в настоящее время являются альтернативой электромагнитных реле и их технология непрерывно совершенствуется.

    Оптроны с “удлиненным” оптическим каналом. В таких оптронах излучатель и фотоприемник могут находиться на значительном расстоянии. В них оптический канал, связывающий излучатель и фотоприемник могут представляет собой волоконный световод. Такие оптоэлектронные приборы широко применяются для передачи информации в локальных сетях ЭВМ.

По спектральному диапазону оптического канала оптроны подразделяются на:

    Оптроны видимого диапазона с длиной волны оптического излучения от 0,4 до 0,75 мкм.

    Оптроны ближнего ИК-диапазона с длиной волны оптического излучения от 0,8 до 1,2 мкм. Этот вид излучения особенно эффективен для оптоэлектронных приборов с открытым каналом.

По конструктивно-технологическому признаку оптроны подразделяются на:

    Опопары (элементарные оптроны), которые содержат один излучатель и один элементарный фотоприемник. В зависимости от типа используемого фотоприемника они могут быть резистивными, диодными, транзисторными, тиристорными и т.п.

    Оптоэлектронные (оптронные) интегральные микросхемы, в которых помимо элементарного оптрона содержатся дополнительные электронные устройства: усилители, компараторы, логические схемы и т. п. В таких интегральных микросхемах входы и выходы гальванически развязаны.

    Специальные виды оптронов: дифференциальные оптроны, которые содержат несколько излучателей и фотоприемников; оптоэлектронные датчики присутствия, задымленности, датчики положения и т.д.

    Оптоэлектронные приборы

    Основные характеристики светоизлучающих диодов видимого диапазона

    Основные характеристики светоизлучающих диодов инфракрасного диапазона

    Оптоэлектронные приборы в широком понимании

    Список использованных источников

Оптоэлектронные приборы

Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации.

Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия оптрона, состоящего из источника излучения, иммерсионной среды (световода) и фотоприемника, основан на преобразовании электрического сигнала в оптический, а затем снова в электрический.

Оптроны как функциональные приборы обладают следующими преимуществами перед обычными радиоэлементами:

полной гальванической развязкой «вход – выход» (сопротивление изоляции превышает 10 12 – 10 14 Ом);

абсолютной помехозащищенностью в канале передачи информации (носителями информации являются электрически нейтральные частицы – фотоны);

однонаправленностью потока информации, которая связана с особенностями распространения света;

широкополосностью из-за высокой частоты оптических колебаний,

достаточным быстродействием (единицы наносекунд);

высоким пробивным напряжением (десятки киловольт);

малым уровнем шумов;

хорошей механической прочностью.

По выполняемым функциям оптрон можно сравнивать с трансформатором (элементом связи) при реле (ключом).

В оптронных приборах применяют полупроводниковые источники излучения – светоизлучающие диоды, изготовляемые из материалов соединений группы А III B V , среди которых наиболее перспективны фосфид и арсенид галлия. Спектр их излучения лежит в области видимого и ближнего инфракрасного излучения (0,5 – 0,98 мкм). Светоизлучающие диоды на основе фосфида галлия имеют красный и зеленый цвет свечения. Перспективны светодиоды из карбида кремния, обладающие желтым цветом свечения и работающие при повышенных температурах, влажности и в агрессивных средах.

Светодиоды, излучающие свет в видимом диапазоне спектра, используют в электронных часах и микрокалькуляторах.

Светоизлучающие диоды характеризуются спектральным составом излучения, который достаточно широк, диаграммой направленности; квантовой эффективностью, определяемой отношением числа испускаемых квантов света к количеству прошедших через p -n -переход электронов; мощностью (при невидимом излучении) и яркостью (при видимом излучении); вольт-амперными, люмен-амперными и ватт-амперными характеристиками; быстродействием (нарастанием и спадом электролюминесценции при импульсном возбуждении), рабочим диапазоном температур. При повышении рабочей температуры яркость светодиода падает и снижается мощность излучения.

Основные характеристики светоизлучающих диодов видимого диапазона приведены в табл. 1, а инфракрасного диапазона – в табл. 2.

Таблица 1 Основные характеристики светоизлучающих диодов видимого диапазона

Тип диода

Яркость, кд/м 2 , или сила света, мккд

Цвет свечения

Постоянный прямой ток, мА

КЛ101 А – В

АЛ102 А – Г

АЛ307 А – Г

10 – 20 кд/м 2

40 – 250 мккд

150 – 1500 мккд

Красный, зеленый

Красный, зеленый

Светоизлучающие диоды в оптоэлектронных приборах соединяются с фотоприемниками иммерсионной средой, основным требованием к которой является передача сигнала с минимальными потерями и искажениями. В оптоэлектронных приборах используют твердые иммерсионные среды – полимерные органические соединения (оптические клеи и лаки), халькогенидные среды и волоконные световоды. В зависимости от длины оптического канала между излучателем и фотоприемником оптоэлектронные приборы можно подразделить на оптопары (длина канала 100 – 300 мкм), оптоизоляторы (до 1 м) и волоконно-оптические линии связи – ВОЛС (до десятков километров).

Таблица 2. Основные характеристики светоизлучающих диодов инфракрасного диапазона

Тип диода

Полная мощность излучения, мВт

Постоянное прямое напряжение, В

Длина волны излучения, мкм

Время нарастания импульса излучения, нс

Время спада импульса излучения, нс

АЛ106 А – Д

0,6 – 1 (при токе 50 мА)

0,2 – 1,5 (при токе 100 мА)

6 – 10 (при токе 100 мА)

1,5 (при токе 100 мА)

0,2 (при токе 20 мА)

10 (при токе 50 м А)

К фотоприемникам, используемым в оптронных приборах, предъявляют требования по согласованию спектральных характеристик с излучателем, минимуму потерь при преобразовании светового сигнала в электрический, фоточувствительности, быстродействию, размерам фоточувствительной площадки, надежности и уровню шумов.

Для оптронов наиболее перспективны фотоприемники с внутренним фотоэффектом, когда взаимодействие фотонов с электронами внутри материалов с определенными физическими свойствами приводит к переходам электронов в объеме кристаллической решетки этих материалов.

Внутренний фотоэффект проявляется двояко: в изменении сопротивления фотоприемника под действием света (фоторезисторы) либо в появлении фото-эдс на границе раздела двух материалов – полупроводник-полупроводник, металл-полупроводник (вентильные фотоэлементы, фотодиоды, фототранзисторы).

Фотоприемники с внутренним фотоэффектом подразделяют на фотодиоды (с p -n -переходом, МДП-структурой, барьером Шоттки), фоторезисторы, фотоприемники с внутренним усилением (фототранзисторы, составные фототранзисторы, фототиристоры, полевые фототранзисторы).

Фотодиоды выполняют на основе кремния и германия. Максимальная спектральная чувствительность кремния 0,8 мкм, а германия – до 1,8 мкм. Они работают при обратном смещении на p -n -переходе, что позволяет повысить их быстродействие, стабильность и линейность характеристик.

Наиболее часто в качестве фотоприемников оптоэлектронных приборов различной сложности применяют фотодиоды p - i -n -структуры, где i – обедненная область высокого электрического поля. Меняя толщину этой области, можно получить хорошие характеристики по быстродействию и чувствительности за счет малой емкости и времени пролета носителей.

Повышенными чувствительностью и быстродействием обладают лавинные фотодиоды, использующие усиление фототока при умножении носителей заряда. Однако у этих фотодиодов недостаточно стабильны параметры в диапазоне температур и требуются источники питания высокого напряжения. Перспективны для использования в определенных диапазонах длин волн фотодиоды с барьером Шоттки и с МДП-структурой.

Фоторезисторы изготовляют в основном из поликристаллических полупроводниковых пленок на основе соединения (кадмия с серой и селеном). Максимальная спектральная чувствительность фоторезисторов 0,5 – 0,7 мкм. Фоторезисторы, как правило, применяют при малой освещенности; по чувствительности они сравнимы с фотоэлектронными умножителями – приборами с внешним фотоэффектом, но требуют низковольтного питания. Недостатками фоторезисторов являются низкое быстродействие и высокий уровень шумов.

Наиболее распространенными фотоприемниками с внутренним усилением являются фототранзисторы и фототиристоры. Фототранзисторы чувствительнее фотодиодов, но менее быстродействующие. Для большего повышения чувствительности фотоприемника применяют составной фототранзистор, представляющий сочетание фото- и усилительного транзисторов, однако он обладает невысоким быстродействием.

В оптронах в качестве фотоприемника можно использовать фототиристор (полупроводниковый прибор с тремя p - n -переходами, переключающийся при освещении), который обладает высокими чувствительностью и уровнем выходного сигнала, но недостаточным быстродействием.

Многообразие типов оптронов определяется в основном свойствами и характеристиками фотоприемников. Одно из основных применений оптронов – эффективная гальваническая развязка передатчиков и приемников цифровых и аналоговых сигналов. В этом случае оптрон можно использовать в режиме преобразователя или коммутатора сигналов. Оптрон характеризуется допустимым входным сигналом (током управления), коэффициентом передачи тока, быстродействием (временем переключения) и нагрузочной способностью.

Отношение коэффициента передачи тока к времени переключения называется добротностью оптрона и составляет 10 5 – 10 6 для фотодиодных и фототранзисторных оптронов. Широко используют оптроны на основе фототиристоров. Оптроны на фоторезисторах не получили широкого распространения из-за низкой временной и температурной стабильности. Схемы некоторых оптронов приведены на рис. 4, а – г.

В качестве когерентных источников излучения применяют лазеры, обладающие высокой стабильностью, хорошими энергетическими характеристиками и эффективностью. В оптоэлектронике для конструирования компактных устройств используют полупроводниковые лазеры – лазерные диоды, применяемые, например, в волоконно-оптических линиях связи вместо традиционных линий передачи информации – кабельных и проводных. Они обладают высокой пропускной способностью (полоса пропускания единицы гигагерц), устойчивостью к воздействию электромагнитных помех, малой массой и габаритами, полной электрической изоляцией от входа к выходу, взрыво- и пожаробезопасностью. Особенностью ВОЛС является использование специального волоконно-оптического кабеля, структура которого представлена на рис. 5. Промышленные образцы таких кабелей имеют затухание 1 – 3 дБ/км и ниже. Волоконно-оптические линии связи используют для построения телефонных и вычислительных сетей, систем кабельного телевидения с высоким качеством передаваемого изображения. Эти линии допускают одновременную передачу десятков тысяч телефонных разговоров и нескольких программ телевидения.

В последнее время интенсивно разрабатываются и получают распространение оптические интегральные схемы (ОИС), все элементы которых формируются осаждением на подложку необходимых материалов.

Перспективными в оптоэлектронике являются приборы на основе жидких кристаллов, широко используемые в качестве индикаторов в электронных часах. Жидкие кристаллы представляют собой органическое вещество (жидкость) со свойствами кристалла и находятся в переходном состоянии между кристаллической фазой и жидкостью.

Индикаторы на жидких кристаллах имеют высокую разрешающую способность, сравнительно дешевы, потребляют малую мощность и работают при больших уровнях освещенности.

Жидкие кристаллы со свойствами, схожими с монокристаллами (нематики, наиболее часто используют в световых индикаторах и устройствах оптической памяти. Разработаны и широко применяются жидкие кристаллы, изменяющие цвет при нагревании (холестерики). Другие типы жидких кристаллов (смектики) используют для термооптической записи информации.

Оптоэлектронные приборы, разработанные сравнительно недавно, получили широкое распространение в различных областях науки и техники, благодаря своим уникальным свойствам. Многие из них не имеют аналогов в вакуумной и полупроводниковой технике. Однако существует еще много нерешенных проблем, связанных с разработкой новых материалов, улучшением электрических и эксплуатационных характеристик этих приборов и развитием технологических методов их изготовления.

Оптоэлектронный полупроводниковый прибор - полупроводниковый прибор, действие которого основано на использовании явлений излучения, передачи или поглощения в видимой, инфракрасной или ультрафиолетовой областях спектра.

Оптоэлектронные приборы в широком понимании представляют собой устройства , использующие оптическое излучение для своей работы: генерации, детектирования, преобразования и передачи информационного сигнала. Как правило, эти приборы включают в себя тот или иной набор оптоэлектронных элементов. В свою очередь, сами приборы можно подразделить на типовые и специальные, считая типовыми те из них, которые серийно производятся для широкого применения в различных отраслях промышленности, а специальные устройства выпускаются с учетом специфики конкретной отрасли - в нашем случае, полиграфии.

Все многообразие оптоэлектронных элементов подразделяют на следующие группы изделий: источники и приемники излучения, индикаторы, элементы оптики и световоды, а также оптические среды, позволяющие создавать элементы управления, отображения и запоминания информации. Известно, что любая систематизация не может быть исчерпывающей, но, как верно отметил наш соотечественник, открывший в 1869 г. периодический закон химических элементов, Дмитрий Иванович Менделеев (1834-1907), наука начинается там, где появляется счет, т.е. оценка, сравнение, классификация, выявление закономерностей, определение критериев, общих признаков. Учитывая это, прежде чем приступить к описанию конкретных элементов, следует хотя бы в общих чертах дать отличительную характеристику оптоэлектронных изделий.

Как было сказано выше, главным отличительным признаком оптоэлектроники является связь с информацией. К примеру, если в какой-то установке для закалки стальных валов используется лазерное излучение, то вряд ли закономерно относить эту установку к оптоэлектронным устройствам (хотя сам источник лазерного излучения имеет на это право).

Было также отмечено, что к оптоэлектронным относят обычно твердотельные элементы (в Московском энергетическом институте издано учебное пособие по курсу «Оптоэлектроника» под названием «Приборы и устройства полупроводниковой оптоэлектроники»). Но это правило не очень жесткое, так как в отдельных изданиях по оптоэлектронике подробно рассматривается работа фотоумножителей и электронно-лучевых трубок (они относятся к типу электровакуумных приборов), газовых лазеров и других устройств, которые не являются твердотельными. Однако в полиграфии упомянутые устройства широко используют наравне с твердотельными (в том числе и полупроводниковыми), решая схожие задачи, поэтому в данном случае они имеют полное право на рассмотрение.

Следует упомянуть еще о трех отличительных чертах, которые, по мнению известного специалиста в области оптоэлектроники Юрия Романовича Носова, характеризуют ее как научно-техническое направление.

Физическую основу оптоэлектроники составляют явления, методы, средства, для которых принципиальны сочетание и неразрывность оптических и электронных процессов. В широком смысле оптоэлектронное устройство определяется как прибор, чувствительный к электромагнитному излучению в видимой, инфракрасной (ИК) или ультрафиолетовой (УФ) областях, или прибор, излучающий и преобразующий некогерентное или когерентное излучение в этих же спектральных областях.

Техническую основу оптоэлектроники определяют конструктивно-технологические концепции современной микроэлектроники: миниатюризация элементов; предпочтительное развитие твердотельных плоскостных конструкций; интеграция элементов и функций.

Функциональное назначение оптоэлектроники состоит в решении задач информатики: генерации (формировании) информации путем преобразования различных внешних воздействий в соответствующие электрические и оптические сигналы; переносе информации; переработке (преобразовании) информации по заданному алгоритму; хранении информации, включающем такие процессы, как запись, собственно хранение, неразрушающее считывание, стирание; отображение информации, т.е. преобразование выходных сигналов информационной системы к воспринимаемому человеком виду.

Список использованных источников

    http://www.hi-edu.ru/e-books/xbook138/01/index.html?part-004.htm

    http://www.hi-edu.ru/e-books/xbook138/01/index.html?part-003.htm

    http://revolution.allbest.ru/radio/00049966_0.html

    http://revolution.allbest.ru/radio/00049842.html

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ТРАНСПОРТА

Реферат

на тему «Оптоэлектронные приборы.»

Выполнил:

Группы ОБД - 08

Чекардинн

Проверила:

Сидорова А.Э.

Тюмень 2010


  1. Элементы оптоэлектронных устройств

    Реферат >> Коммуникации и связь

    По схеме составного транзистора. Оптоэлектронные приборы Работа оптоэлектронных приборов основана на электронно-фотонных... передачи и хранения информации. Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия...

  2. Применение оптронов и приборов для отображения информации

    Реферат >> Коммуникации и связь

    Определения Оптронами называют такие оптоэлектронные приборы , в которых имеются источник и... 2. В. И. Иванов, А. И. Аксенов, А. М. Юшин «Полупроводниковые оптоэлектронные приборы .» / Справочник.”- М.: Энергоатомиздат, 2002 г. 3. Балуев В.К. «Развитие...

  3. Признаки классификации полупроводниковых приборов

    Реферат >> Физика

    По каким признакам классифицируются полупроводниковые приборы ? Полупроводниковые приборы классифицируют в зависимости от механизма... оптически прозрачное окно. Светодиод Полупроводниковый оптоэлектронный прибор , преобразующий энергию протекающего прямого...

Элементами оптоэлектронных устройств являются фотоэлектронные приборы, рассмотренные выше, а связь между элементами не электрическая, а оптическая. Таким образом, в оптоэлектронныхустройствах практически полностью устранена гальваническая связь между входными и выходными цепями и практически полностью устранена обратная связь между входом и выходом. Комбинируя элементы, входящие в оптоэлектронные устройства, можно получать самые различные их функциональные свойства. На рис. 6.35 представлены конструкции различных оптронов.

Простейшим оптоэлектронным устройством является оптрон.

Оптрон – это устройство, объединяющее в одном корпусе светодиод и приёмник фотоизлучения, например фотодиод (рис. 6.36).

Входной усиливаемый сигнал поступает на светодиод и вызывает его свечение, которое по световому каналу поступает на фотодиод. Фотодиод открывается и в его цепи протекает ток под действием внешнего источника E . Эффективную оптическую связь между элементами оптрона осуществляют с помощью средств волоконной оптики – световодов, выполненных в виде жгута из тонких прозрачных нитей, по которым сигнал передаётся за счёт полного внутреннего отражения с минимальными потерями и с высокой разрешающей способностью. Вместо фотодиода в составе оптрона может быть фототранзистор, фототиристор, фоторезистор.

На рис. 6.37 представлены условные графические обозначения таких приборов.

Диодный оптрон используется в качестве ключа и может коммутировать ток с частотой 10 6 ...10 7 Гц и имеет сопротивление между входной и выходной цепями – 10 13 ...10 15 Ом.

Транзисторные оптроны благодаря большей чувствительности фотоприемника экономичнее диодных. Однако быстродействие их меньше, максимальная частота коммутации обычно не превышает 10 5 Гц. Так же как и диодные, транзисторные оптроны имеют малое сопротивление в открытом состоянии и большое в закрытом и обеспечивают полную гальваническую развязку входных и выходных цепей.

Использование в качестве фотоприемника фототиристора позволяет увеличить импульс выходного тока до 5 А и более. При этом время включения составляет менее 10 -5 с, а входной ток включения не превышает 10 мА. Такие оптроны позволяют управлять сильноточными устройствами различного назначения.

Выводы:

1. Работа оптоэлектронных приборов основана на принципе внутреннего фотоэффекта – генерации пары носителей заряда «электрон – дырка» под действием светового излучения.

2. Фотодиоды обладают линейной световой характеристикой.

3. Фототранзисторы имеют большую интегральную чувствительность, чем фотодиоды, благодаря усилению фототока.

4. Оптроны – оптоэлектронные приборы, в которых обеспечивается электрическая изоляция



входных и выходных цепей.

5. Фотоумножители позволяют резко увеличить фототок за счёт применения вторичной электронной эмиссии.

Контрольные вопросы

1. Что такое внешний и внутренний фотоэффект?

2. Какими параметрами характеризуется фоторезистор?

3. Какие физические факторы влияют на световую характеристику фоторезистора при больших световых потоках?

4. Каковы отличия в свойствах фотодиода и фоторезистора?

5. Как в фотоэлементе происходит непосредственное преобразование световой энергии в электрическую?

6. Каковы отличия в принципе действия и свойствах фотодиода и биполярного фототранзистора?

7. Почему тиристор может управлять относительно большими мощностями, чем допустимая мощность рассеяния самого фототиристора?

8. Что такое оптопара?

ПРИЛОЖЕНИЕ. КЛАССИФИКАЦИЯ И ОБОЗНАЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

Для унификации обозначений и стандартизации параметров полупроводниковых приборов используется система условных обозначений. Эта система классифицирует полупроводниковые приборы по их назначению, основным физическим и электрическим параметрам, конструктивнотехнологическим свойствам, виду полупроводниковых материалов. Система условных обозначений отечественных полупроводниковых приборов базируется на государственных и отраслевых стандартах. Первый ГОСТ на систему обозначений полупроводниковых приборов – ГОСТ 10862–64 был введен в 1964 году. Затем по мере возникновения новых классификационных групп приборов был изменен на ГОСТ 10862–72, а затем на отраслевой стандарт ОСТ 11.336.038–77 и ОСТ 11.336.919–81. При этой модификации основные элементы буквенно-цифрового кода системы условных обозначений сохранились. Данная система обозначений логически выстроена и позволяет дополнять себя по мере дальнейшего развития элементной базы.

Основные термины, определения и буквенные обозначения основных и справочных параметров полупроводниковых приборов приведены в ГОСТах:

§ 25529–82 – Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров.

§ 19095–73 – Транзисторы полевые. Термины, определения и буквенные обозначения параметров.

§ 20003–74 – Транзисторы биполярные. Термины, определения и буквенные обозначения параметров.

§ 20332–84 – Тиристоры. Термины, определения и буквенные обозначения параметров.

Оптоэлектроника – это раздел электроники, связанный главным образом с изучением эффектов взаимодействия между электромагнитными волнами оптического диапазона и электро­нами вещества (преимущественно твердых тел) и охватываю­щий проблемы создания оптоэлектронных приборов (в основ­ном методами микроэлектронной технологии), в которых эти эффекты используются для генерации, передачи, обработки, хранения и отображения информации.

Согласно этому определению оптоэлектронику как научно-техническое направление характеризуют три отличительные черты.

1. Физическую основу оптоэлектроники составляют явления, методы, средства, для которых принципиальны сочетание и неразрывность оптических и электронных процессов.

2. Техническую основу оптоэлектроники определяют конст­руктивно-технологические концепции современной микроэлек­троники: миниатюризация элементов; предпочтительное разви­тие твердотельных плоскостных конструкций; интеграция эле­ментов и функций; ориентация на специальные сверхчистые материалы; применение методов групповой обработки изделий.

3. Функциональное назначение оптоэлектроники состоит в решении следующих задач: генерации, переносе, преобразо­вании, хранении и отображении информации.

Для решения перечисленных задач в оптоэлектронных при­борах используются информацион­ные сигналы в оптической и электрической формах, но определяющими являются оптиче­ские сигналы – именно этим достигается то качественно новое, что отличает оптоэлектронику.

Оптоэлектронными называют приборы , чув­ствительные к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также при­боры, производящие или использующие такое излучение.

В конкретном оптоэлектронном приборе наличие всех трех составляющих данного выше определения является обяза­тельным, но перечисленные отличительные признаки могут быть воплощены в большей или меньшей степени. Это по­зволяет разделить опто- и фотоэлектронные приборы (фото­электронные умножители, электроннолучевые приборы).

На рис. 2.1 представлена классификация оптоэлектронных при­боров и указаны физические эффекты, лежащие в основе их работы.

На практике широко используются источники излуче­ния (излучатели), приемники излучения (фотоприемни­ки) и оптроны (оптопары).

Излучатель – источник, световой поток или яркость которого является функцией электрического сигнала, поступающего на его вход.

Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры. Широко используются оптроны, в которых применя­ются пары светодиод–фотодиод, светодиод–фототранзистор, светодиод–фототиристор.

По виду используемого излучателя выделяют приборы ко­герентной (с лазерами) и некогерентной (со светоизлучающими диодами) оптоэлектроники.

Как отдельные приборы, так и сложные оптоэлектронные системы создаются из отдельных элементов. Основными оптоэлектронными элементами являются:

· источники когерентного оптического излучения (полупро­водниковый лазер);

· источники некогерентного оптического излучения (светоизлучающий диод);

· активные и пассивные оптические среды;

· приемники оптического излучения (фотодиод);

· оптические элементы (линза);

· волоконно-оптические элементы (волоконно-оптический жгут);

· интегрально-оптические элементы (интегрально-оптическое зеркало).

Как видно из обобщенной структурной схемы оптоэлектронного прибора (ОЭП), приведенной на рис. 2.2, наряду с фо­топриемниками и излучателями важным компонентом ОЭП яв­ляются входные и выходные согласующие электрические схемы, предназначенные для формирования и обработки оптического сигнала. Особенностью этих достаточно сложных, в основном интегральных, схем является компенсация потерь энергии при преобразованиях «электричество – свет» и «свет – электри­чество», а также обеспечение высокой стабильности и устой­чивости работы ОЭП при воздействии внешних факторов.

По функциональному назначению в классе оптоэлектронных приборов, кроме миниатюрных источников излучения и одно- и многоэлементных приемников излучения, следует выделить следующие приборы.

Оптопарой называют оптоэлектронный прибор, в котором конструктивно объединены в общем корпусе излучатель на входе и фотоприемник на выходе, взаимодейст­вующие друг с другом оптически и электрически.

Оптопары широко используются в микроэлектронной и элек­тротехнической аппаратуре для обеспечения электрической развязки при передаче информационных сигналов, бесконтакт­ной коммутации сильноточных и высоковольтных цепей и соз­дания перестраиваемых фотоприемников в устройствах кон­троля и регулирования.

Оптоэлектронные датчики – приборы, преобразующие внешние физические воздействия: температуру, давление, влажность, ускорение, магнитное поле и другие, – в электри­ческие сигналы. Действие этих приборов основано на различных принципах. К датчикам относятся формирователи сигналов изо­бражения и оптопары с открытым оптическим каналом. Осо­бенно интенсивное развитие этого направления связано с по­явлением волоконно-оптических датчиков, в которых внешние воздействия изменяют характеристики оптического сигнала, распространяюще­гося по волокну.

Волоконно-оптические линии связи (ВОЛС) – устройства и системы, содержащие гибкий волоконно-оптический световод (в виде кабеля), сочлененный с излучателем на одном (пере­дающем) конце и с фотоприемником на другом (приемном).

Физическую основу ВОЛС определяют процессы распро­странения оптических сигналов по волоконному световоду, а также светогенерационные и фотоэлектрические явления в из­лучателе и приемнике.

Индикаторы – электрически управляемые приборы для систем визуального отображения информации. Они находят широчайшее применение, начиная от электронных часов и микро-калькуляторов, табло и приборных щитов и кончая дисплеями в системе «человек – ЭВМ». Физическую основу приборов ин­дикаторного типа составляют разные виды электролюминес­ценции (для приборов с активным светящимся растром) и электрооптические явления (для приборов с пассивным светоотражающим растром).

В соответствии с классификацией изделий некогерентной оптоэлектроники ОЭП разделяются: по виду оптоэлектронного пре­образования сигналов (принцип преобразования «электричест­во – свет» реализуется в излучающих приборах), уровню интегра­ции, функциональному применению и конструктивному исполне­нию. Каждая из выделенных групп ОЭП, по-видимому, будет в дальнейшем пополняться новыми приборами и устройствами.

Перечислим основные достоинства оптоэлектронных приборов:

Высокая пропускная способность оптического канала. Частота колебаний на три-пять порядков выше, чем в осво­енном радиотехническом диапазоне. Это значит, что во столько же раз возрастает и пропускная способность оптического ка­нала передачи информации.

Идеальная электрическая развязка входа и выхода. Ис­пользование в качестве носителя информации электрически нейтральных фотонов обусловливает бесконтактность оптиче­ской связи. Отсюда следуют идеальная электрическая развязка входа и выхода; однонаправленность потока информации и отсутствие обратной реакции приемника на источник; помехо­защищенность оптических каналов связи; скрытность передачи информации по оптическому каналу связи.

Как недостатки можно выделить следующие особенности ОЭП:

Малый коэффициент полезного действия. Коэффициент полезного действия преобразований вида E (освещенность) > L (яркость) и L > E в лучших современных приборах (лазеры, светодиоды, p-i-n фо­тодиоды), как правило, не превышает 10...20%. Поэтому если в устройстве осуществляются такие преобразования лишь два­жды (на входе и на выходе), как, например, в оптопарах или волоконно-оптических линиях связи (ВОЛС), то общий КПД падает до единиц процентов. Введение каждого дополнитель­ного акта преобразования информационных сигналов из одной формы в другую ведет к уменьшению КПД еще на порядок или более. Малое значение КПД вызывает рост энергопотребления, что недопустимо из-за ограниченных возможностей источников питания; затрудняет миниатюризацию, поскольку практически не удается отвести выделяющуюся теплоту; снижает эффек­тивность и надежность большинства оптоэлекронных приборов.

Наличие разнородных материалов, применяемых в оптоэлектронных приборах и системах, обусловливает: малый об­щий КПД устройства из-за поглощения излучения в пассивных областях структур, отражения и рассеяния на оптических гра­ницах; снижение надежности из-за различия температурных коэффициентов расширения материалов; сложность общей герметизации устройства; технологическую сложность и высокую стоимость.